题目:
把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。
示例:
输入:
n = 2
输出:
{[2,0.03],[3,0.06],[4,0.08],[5,0.11]
,[6,0.14],[7,0.17],[8,0.14],[9,0.11]
,[10,0.08],[11,0.06],[12,0.03]}
解法:
/**
* 动态规划规律:f(n)=f(n-1)+f(n-2)+f(n-3)+f(n-4)+f(n-5)+f(n-6)
* 向已有的骰子中再加入一个骰子,此时和为n出现的次数应为和为n-1,
* n-2,n-3,n-4,n-5,n-6的次数之和
* @param n
* @return
*/
public static Map dicesSum(int n) {
Map resMap = new HashMap<>();
int[] resA = new int[6 * n + 1];
int[] resB = new int[6 * n + 1];
for (int i = 1; i <= 6; i++) {
resA[i] = 1;
}
boolean flag = false;//flag用于标识两个数组的交换
if (n > 1) {
for (int j = 2; j <= n; j++) {
if (!flag) {
for (int k = j; k <= 6 * j; k++) {
resB[k] = f(k, resA);
}
flag = true;
} else {
for (int k = j; k <= 6 * j; k++) {
resA[k] = f(k, resB);
}
flag = false;
}
}
}
if (!flag) {
for (int i = n; i <= 6 * n; i++) {
resMap.put(i, ratio(resA[i], n));
}
} else {
for (int i = n; i <= 6 * n; i++) {
resMap.put(i, ratio(resB[i], n));
}
}
return resMap;
}
/**
* 计算次数所占比例
* @param i 对应情况发生次数
* @param n 可能发生情况综述
* @return
*/
private static Double ratio(int i, int n) {
return i / Math.pow(6, n);
}
/**
* 计算当前点数发生的次数
* @param k
* @param res
* @return
*/
private static int f(int k, int[] res) {
int temp = 0;
for (int i = k - 1; i >= k - 6; i--) {
if (i > 0) {
temp = temp + res[i];
}
}
return temp;
}