- 论单调队列优化DP
VU-zFaith870
c++动态规划推荐算法
前情提要,参考资料:单调队列优化DP(超详细!!!)-endl\n-博客园【动态规划】选择数字(单调队列优化dp)_哔哩哔哩_bilibili背景:最近作者快被DP逼疯了,写篇博客做记录。以下是对各DP的原理阐释:单调队列通过队列元素的吸入与弹出,形成单调性的结构,使算法能够进行线性处理,大大优化了时间复杂度。接下来讲解单调队列在区间DP、背包DP、树形DP还有数位DP中的应用:1.单调队列优化区
- dp背包问题
|CXHAO|
c++
有NN件物品和一个容量是VV的背包。每件物品只能使用一次。第ii件物品的体积是vivi,价值是wiwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。接下来有NN行,每行两个整数vi,wivi,wi,用空格隔开,分别表示第ii件物品的体积和价值。输出格式输出一个整数,表示最大价值
- 第13章贪心算法
厨 神
贪心算法算法
贪心算法局部最优求得总体最优适用于桌上有6张纸币,面额为10010050505010,问怎么能拿走3张纸币,总面额最大?—拿单位价值最高的只关注局部最优----关注拿一张的最大值拆解-----拿三次最大的纸币不适用于桌面三件物品,每个物品都有重量和价值,wv695733承重为8,求不超过背包承重情况下最大价值只能选一件,能不能得到最大值----选69还剩下二,能选第二件吗?不能选所以不适用,因为不
- 贪心算法在背包问题上的运用(Python)
MATLAB卡尔曼
智能算法的MATLAB实现贪心算法python算法
背包问题有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?这就是典型的背包问题(又称为0-1背包问题),也是具体的、没有经过任何延伸的背包问题模型。背包问题的传统求解方法较为复杂,现定义有一个可以载重为8kg的背包,另外还有4个物品,物品的价值和质量数据如下表,不考虑背包的容量。4个物品的总质量大于8kg,所以要想在有限载重的背包携带更多质量的物品,
- 代码随想录 Day 42 | 【第九章 动态规划 part 05】完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)
Accept17
动态规划算法
一、完全背包完全背包视频讲解:带你学透完全背包问题!和01背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibilihttps://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.ht
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- Deepseek结合AnythingLLM搭建个人本地智能知识库
曲幽
AI计算机deepseekai大模型ollamaanythingllm本地知识库
之前通过Ollama搭建了本地Deepseek大模型对话机制,但知识点仅限于Deepseek内部的数据,且目前数据截止时间为2024年7月,如果我们询问一些专业性比较强的内容,则Deepseek也显得无能为力,这就需要再给这个大脑外接一些文档数据了,通过AnythingLLM来Embedding外部文档。更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程1下载安装AnythingLLM有
- DeepSeek大语言模型下几个常用术语
曲幽
AI计算机语言模型人工智能自然语言处理deepseekollamaai
昨天刷B站看到复旦赵斌老师说的一句话“科幻电影里在人脑中植入芯片或许在当下无法实现,但当下可以借助AI人工智能实现人类第二脑”(大概是这个意思)更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程基本概念AI人工智能NLP自然语言处理LLM大语言模型HuggingFace一个提供了丰富的预训练模型和工具库的平台网站Ollama开源的本地大语言模型运行框架,用来在本地部署调用大语言模型,如D
- 动态规划双剑合璧:C++与Python征服洛谷三大经典DP问题
三流搬砖艺术家
动态规划c++python
动态规划核心思想状态定义→转移方程→边界处理→时空优化本文精选洛谷动态规划题单中三大经典问题,通过C++与Python双语言对比实现,彻底掌握DP精髓!题目一:P1048采药(01背包模板)题目描述在限定时间T内采集草药,每株草药有采集时间time[i]和价值value[i],求最大总价值。解题思路状态定义:dp[j]表示时间j能获得的最大价值转移方程:dp[j]=max(dp[j],dp[j-t
- 回溯法-子集树递归树-装载问题
王安安的记录
算法回溯法c++算法
回溯法深度优先策略(回忆深度优先遍历二叉树思路)解题步骤:1)针对所给问题,定义问题的解空间;例如,n个物品的0-1背包问题所对应的解空间树是一棵子集树。2)确定易于搜索的解空间结构;3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数(****约束函数除去不满足约束的子树,限界函数减去得不到最优解的子树**)**避免无效搜索##子集树和递归树扩展结点:一个正在产生儿子的结点称为扩展结点。活结点
- 01背包问题简介
天狼星——白羽
python
01背包问题是动态规划算法中非常经典的一个问题,广泛应用于优化选择场景。它描述的是:给定一组物品(每个物品有重量和价值),以及一个最大承重能力的背包,在不超过背包容积的前提下,如何挑选这些物品使得装入背包中的总价值最高。基本要素n件物品每一件都有两个属性:weight[i]表示第i物品的重量;value[i]表示该物品的价值。背包的最大承载量为W;目标是在满足重量限制的情况下获得最大的总价值Vma
- OpenAPI Generator Maven 插件配置详解(SpringBoot集成)
txzq
mavenspringbootjavaGeneratorOpenAPI
0-1开始Java语言编程之路一、Ubuntu下Java语言环境搭建|MacOS下使用Jenv管理多JDK版本二、Ubuntu下Docker环境安装|MacOS下Docker安装与配置三、使用Docker搭建本地NexusMaven私有仓库四、Ubuntu下使用VisualStudioCode进行Java开发五、从Swagger到OpenAPI,SpringBoot集成StepByStep六、Op
- 点云从入门到精通技术详解100篇-基于背包激光雷达点云在城市公园单木参数提取中的应用
格图素书
人工智能
目录前言国内外发展现状(DevelopmentStatusatHomeandAbroad)背包LiDAR技术及其在林业调查中的应用进展单木胸径提取算法研究现状单木树高提取算法研究现状2背包LiDAR城市公园树木数据采集及预处理2.1测区概况(OverviewTestArea)2.2背包LiDAR数据采集与处理(BackpackLiDARDataAcquisitionand2.2.1背包激光雷达系统
- FastGPT 引申:混合检索完整实例
窝窝和牛牛
FastGPT开源
文章目录FastGPT引申:混合检索完整实例1.各检索方式的初始结果2.RRF合并过程3.合并后的结果4.Rerank重排序后5.最终RRF合并6.内容总结FastGPT引申:混合检索完整实例下边通过一个简单的例子说明不同检索方式的分值变化过程,假设我们有一个查询:“如何使用Python进行数据分析”1.各检索方式的初始结果向量检索结果(相似度分数0-1):1.{id:"doc1",q:"Pyth
- Leetcode 刷题笔记1 动态规划part05
平乐君
leetcode笔记动态规划
开始完全背包不同于01背包,完全背包的特色在于元素可以重复拿取,因此在递归公式和遍历顺序上都有些许不同。leetcode518零钱兑换||在组合方式中所用到的递推公式是dp[j]=dp[j-coins[i]]+dp[j]对于coins[i]>j的情况,forjinrange(coin[i],amount+1)不会执行,即实现dp[i][j]=dp[i-1][j]classSolution:defc
- Leetcode 刷题笔记1 动态规划part04
平乐君
leetcode笔记动态规划
leetcode最后一块石头的重量||问题转化,把石头问题转化为背包问题,在target容量范围内所能装的最大石头重量classSolution:deflastStoneWeightII(self,stones:List[int])->int:total=sum(stones)target=total//2dp=[0]*(target+1)forstoneinstones:forjinrange(
- MoeCTF 2023 CRYPTO 部分wp
("cat suan_cai_yu")
网络
MoeCTF2023CRYPTO部分wp前言MoeCTF2023CRYPTO方向的部分赛题0x01、baby_e知识点:低加密指数攻击0x02、bad_E知识点:e和phi不互素0x03:bad_random知识点:线性同余算法生成伪随机数0x04.|p-q|知识点:p和q很接近直接爆破0x05.minipack知识点:背包密码,贪心算法总结前言作者通过写文章记录自己的CTF经历,有不对的地方还请
- 数据分析学习目录
且行且安~
数据分析进阶之路#数据分析目录数据分析
在未来5个月里,将会陪伴大家一起来学习关于数据分析的相关内容,包括从数据思维,数据工具(Excel,Mysql,Hive,Python),数据方法论,数据展示(Tableau,BI),数据挖掘、数据实战项目一整套的内容,同步会将可能用到的以及有用的知识点整理出来。内容会慢慢更新。如下为数据分析的整个目录一、数据分析思维与方法论1.1、从0-1搭建指标体系、用户标签体系1.1.1、指标体系搭建-专项
- 算法分析-贪心算法
old-handsome
算法贪心算法算法
文章目录前言一、定义二、特点三、使用场景适用场景:何时使用部分背包问题活动安排问题最优装载问题最小生成树Prim算法:按点检索,适用于稠密图Kruskal算法:并查集+最小生成树Dijkstra算法:不能存在负权边,松弛操作总结前言本博客仅做学习笔记,如有侵权,联系后即刻更改科普:贪心算法一、定义贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望最终结果是最
- 蓝桥杯算法基础(36)动态规划dp经典问题详解
湖前一人对影成双
算法蓝桥杯动态规划
动态规划-动态规划方法方法代表了这一类问题(最优子结构or子问题最优性)的有一半解法,是设计方法或者策略,不是具体算法-本质是递推,核心是找到状态转移的方式,写出dp方程-形式:记忆性递归递推01背包问题有n个重量和价值分别为wi,vi的物品,从这些物品中挑选出总重量不超过n的物品,求所有挑选方案中的值总和的最大值1=w[i]){intv1=v[i]+dfs(i+1,ww-w[i]);//选择当前
- 使用Docker搭建本地Nexus私有仓库
txzq
JAVA基础dockermavenjava
0-1开始Java语言编程之路一、Ubuntu下Java语言环境搭建二、Ubuntu下Docker环境安装三、使用Docker搭建本地NexusMaven私有仓库四、Ubuntu下使用VisualStudioCode进行Java开发你需要NexusJava应用编译构建的一种主流方式就是通过Maven,Maven可以很方便的管理Java应用的各种依赖包。但是在默认情况下,maven在进行java应用
- 华为OD机试 - 核酸最快检测效率 - 动态规划、背包问题(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述在系统、网络均正常的情况下组织核酸采样员和
- 【零基础到精通Java合集】第十一集:List集合框架与泛型
羽轩GM
零基础到精通Java合集Java教程
课程标题:List集合框架与泛型(15分钟)目标:掌握泛型在List中的应用,理解类型安全的重要性,熟练操作泛型集合0-1分钟:泛型List的意义引入以“分类储物箱”类比泛型List:明确容器内元素类型(如只能放书籍)。说明泛型的核心作用——编译时类型检查,避免运行时类型转换错误。1-2分钟:无泛型List的痛点演示非泛型List的风险:ListrawList=newArrayList();raw
- 【动态规划】 解决背包问题 Python
Alexlllly
Python实现算法python算法动态规划leetcode
【动态规划】解决背包问题Python背包问题背包问题现在有3个物品篮球1kg1000元吉他3kg2000元单反4kg2500元有1个背包重4kg问怎么拿物品价值最大运用动态规划DP来解决此问题方法代码【源码】——思路来自麻省理工背包问题defbackpack(memory,item_weight,values,last_weight,index):'''memory:如果是已经计算过得分支则直接返
- 部分背包问题(贪心算法)
萧毅寒
贪心算法算法
一、概念与问题背景部分背包问题是一种经典的优化问题,其中给定一系列物品,每个物品有一定的重量和价值,目标是在一个固定容量的背包中装入物品,使得背包中物品的总价值最大。与0/1背包问题不同,部分背包问题允许将物品分割,即可以只选择物品的一部分装入背包。二、贪心策略介绍对于部分背包问题,贪心算法是一种有效的解决策略。贪心策略的基本思想是,在每一步选择中,都采取在当前状态下最好或最优(即最有利)的选择,
- 算法研究员技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
一、基础阶段:构建算法与数学根基数据结构与基础算法数据结构:数组、链表、栈、队列、哈希表、树(二叉搜索树、堆、字典树)、图等。基础算法:排序(快速排序、堆排序)、查找(二分查找)、递归与分治、贪心算法、简单动态规划(背包问题)、字符串匹配(KMP、Rabin-Karp)、图遍历(BFS/DFS)等。实践方法:通过LeetCode等平台刷题(如“剑指Offer”系列),掌握算法原理与代码实现。数学基
- 第十三届蓝桥杯大赛软件赛决赛C/C++ 大学 B 组
Kent_J_Truman
蓝桥杯蓝桥杯
A【2022——暴力DP/优雅背包】-CSDN博客B【钟表——类日期问题】-CSDN博客C【卡牌——二分】-CSDN博客D【最大数字——DFS】-CSDN博客E【出差——Dijkstra】-CSDN博客F【费用报销——01背包】-CSDN博客G【故障——条件概率】-CSDN博客H【机房——LCA】-CSDN博客I【齿轮——优化(预处理,去重,哈希)】-CSDN博客J【搬砖——经典带贪心01背包(背
- 力扣-动态规划-518 零钱兑换Ⅱ
夏末秋也凉
力扣#动态规划算法
思路dp数组定义:完全背包,不限物品使用次数,使用0-i的硬币,总和小于等于j的组合方式有dp[i][j]个递推公式:if(j>=coins[i])dp[i][j]=dp[i-1][j]+dp[i][j-coins[i]];elsedp[i][j]=dp[i-1][j];dp数组初始化:第一行以及第一列初始化为1遍历顺序:左右,上下时间复杂度:代码classSolution{public:intc
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla