linux内核数据结构之kfifo

1、前言

  最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:

linux内核数据结构之kfifo

  环形缓冲区的详细介绍及实现方法可以参考http://en.wikipedia.org/wiki/Circular_buffer,介绍的非常详细,列举了实现环形队列的几种方法。环形队列的不便之处在于如何判断队列是空还是满。维基百科上给三种实现方法。

2、linux 内核kfifo

  kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:

struct kfifo { unsigned char *buffer; /* the buffer holding the data */ unsigned int size; /* the size of the allocated buffer */ unsigned int in; /* data is added at offset (in % size) */ unsigned int out; /* data is extracted from off. (out % size) */ spinlock_t *lock; /* protects concurrent modifications */ };

kfifo提供的方法有:

 1 //根据给定buffer创建一个kfifo

 2 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,  3                 gfp_t gfp_mask, spinlock_t *lock);  4 //给定size分配buffer和kfifo

 5 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask,  6                  spinlock_t *lock);  7 //释放kfifo空间

 8 void kfifo_free(struct kfifo *fifo)  9 //向kfifo中添加数据

10 unsigned int kfifo_put(struct kfifo *fifo, 11                 const unsigned char *buffer, unsigned int len) 12 //从kfifo中取数据

13 unsigned int kfifo_put(struct kfifo *fifo, 14                 const unsigned char *buffer, unsigned int len) 15 //获取kfifo中有数据的buffer大小

16 unsigned int kfifo_len(struct kfifo *fifo)

       定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下:

 1 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,  2              gfp_t gfp_mask, spinlock_t *lock)  3 {  4     struct kfifo *fifo;

 6     /* size must be a power of 2 */

 7     BUG_ON(!is_power_of_2(size));

 9     fifo = kmalloc(sizeof(struct kfifo), gfp_mask); 10     if (!fifo) 11         return ERR_PTR(-ENOMEM);

13     fifo->buffer = buffer; 14     fifo->size = size; 15     fifo->in = fifo->out = 0; 16     fifo->lock = lock; 17 

18     return fifo; 19 } 20 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock) 21 { 22     unsigned char *buffer; 23     struct kfifo *ret;

29     if (!is_power_of_2(size)) { 30         BUG_ON(size > 0x80000000); 31         size = roundup_pow_of_two(size); 32  }

34     buffer = kmalloc(size, gfp_mask); 35     if (!buffer) 36         return ERR_PTR(-ENOMEM);

38     ret = kfifo_init(buffer, size, gfp_mask, lock); 39 

40     if (IS_ERR(ret)) 41  kfree(buffer);

43     return ret; 44 }

  在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

      kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:

 1 static inline unsigned int kfifo_put(struct kfifo *fifo,  2                 const unsigned char *buffer, unsigned int len)  3 {  4     unsigned long flags;  5     unsigned int ret;  6     spin_lock_irqsave(fifo->lock, flags);  7     ret = __kfifo_put(fifo, buffer, len);  8     spin_unlock_irqrestore(fifo->lock, flags);  9     return ret; 10 } 11 

12 static inline unsigned int kfifo_get(struct kfifo *fifo, 13                      unsigned char *buffer, unsigned int len) 14 { 15     unsigned long flags; 16     unsigned int ret; 17     spin_lock_irqsave(fifo->lock, flags); 18     ret = __kfifo_get(fifo, buffer, len); 19         //当fifo->in == fifo->out时,buufer为空

20     if (fifo->in == fifo->out) 21         fifo->in = fifo->out = 0; 22     spin_unlock_irqrestore(fifo->lock, flags); 23     return ret; 24 } 25 

26 

27 unsigned int __kfifo_put(struct kfifo *fifo, 28             const unsigned char *buffer, unsigned int len) 29 { 30     unsigned int l; 31        //buffer中空的长度

32     len = min(len, fifo->size - fifo->in + fifo->out);

34     /*

35  * Ensure that we sample the fifo->out index -before- we 36  * start putting bytes into the kfifo. 37      */

39  smp_mb();

41     /* first put the data starting from fifo->in to buffer end */

42     l = min(len, fifo->size - (fifo->in & (fifo->size - 1))); 43     memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);

45     /* then put the rest (if any) at the beginning of the buffer */

46     memcpy(fifo->buffer, buffer + l, len - l); 47 

48     /*

49  * Ensure that we add the bytes to the kfifo -before- 50  * we update the fifo->in index. 51      */

53  smp_wmb();

55     fifo->in += len;  //每次累加,到达最大值后溢出,自动转为0

57     return len; 58 } 59 

60 unsigned int __kfifo_get(struct kfifo *fifo, 61              unsigned char *buffer, unsigned int len) 62 { 63     unsigned int l; 64         //有数据的缓冲区的长度

65     len = min(len, fifo->in - fifo->out);

67     /*

68  * Ensure that we sample the fifo->in index -before- we 69  * start removing bytes from the kfifo. 70      */

72  smp_rmb();

74     /* first get the data from fifo->out until the end of the buffer */

75     l = min(len, fifo->size - (fifo->out & (fifo->size - 1))); 76     memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);

78     /* then get the rest (if any) from the beginning of the buffer */

79     memcpy(buffer + l, fifo->buffer, len - l);

81     /*

82  * Ensure that we remove the bytes from the kfifo -before- 83  * we update the fifo->out index. 84      */

86  smp_mb();

88     fifo->out += len; //每次累加,到达最大值后溢出,自动转为0

90     return len; 91 }

  put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。

(1)空的kfifo,

linux内核数据结构之kfifo

(2)put一个buffer后

linux内核数据结构之kfifo

(3)get一个buffer后

linux内核数据结构之kfifo

(4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去

linux内核数据结构之kfifo

3、测试程序

 仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:

 1 /**@brief 仿照linux kfifo写的ring buffer  2  *@atuher Anker date:2013-12-18  3 * ring_buffer.h  4  * */

 5 

 6 #ifndef KFIFO_HEADER_H  7 #define KFIFO_HEADER_H

 8 

 9 #include <inttypes.h>

 10 #include <string.h>

 11 #include <stdlib.h>

 12 #include <stdio.h>

 13 #include <errno.h>

 14 #include <assert.h>

 15 

 16 //判断x是否是2的次方

 17 #define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))

 18 //取a和b中最小值

 19 #define min(a, b) (((a) < (b)) ? (a) : (b))

 20 

 21 struct ring_buffer  22 {  23     void         *buffer;     //缓冲区

 24     uint32_t     size;       //大小

 25     uint32_t     in;         //入口位置

 26     uint32_t       out;        //出口位置

 27     pthread_mutex_t *f_lock;    //互斥锁

 28 };  29 //初始化缓冲区

 30 struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock)  31 {  32  assert(buffer);  33     struct ring_buffer *ring_buf = NULL;  34     if (!is_power_of_2(size))  35  {  36     fprintf(stderr,"size must be power of 2.\n");  37         return ring_buf;  38  }  39     ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer));  40     if (!ring_buf)  41  {  42         fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s",  43  errno, strerror(errno));  44         return ring_buf;  45  }  46     memset(ring_buf, 0, sizeof(struct ring_buffer));  47     ring_buf->buffer = buffer;  48     ring_buf->size = size;  49     ring_buf->in = 0;  50     ring_buf->out = 0;  51         ring_buf->f_lock = f_lock;  52     return ring_buf;  53 }  54 //释放缓冲区

 55 void ring_buffer_free(struct ring_buffer *ring_buf)  56 {  57     if (ring_buf)  58  {  59     if (ring_buf->buffer)  60  {  61         free(ring_buf->buffer);  62         ring_buf->buffer = NULL;  63  }  64  free(ring_buf);  65     ring_buf = NULL;  66  }  67 }  68 

 69 //缓冲区的长度

 70 uint32_t __ring_buffer_len(const struct ring_buffer *ring_buf)  71 {  72     return (ring_buf->in - ring_buf->out);  73 }  74 

 75 //从缓冲区中取数据

 76 uint32_t __ring_buffer_get(struct ring_buffer *ring_buf, void * buffer, uint32_t size)  77 {  78     assert(ring_buf || buffer);  79     uint32_t len = 0;  80     size  = min(size, ring_buf->in - ring_buf->out);  81     /* first get the data from fifo->out until the end of the buffer */

 82     len = min(size, ring_buf->size - (ring_buf->out & (ring_buf->size - 1)));  83     memcpy(buffer, ring_buf->buffer + (ring_buf->out & (ring_buf->size - 1)), len);  84     /* then get the rest (if any) from the beginning of the buffer */

 85     memcpy(buffer + len, ring_buf->buffer, size - len);  86     ring_buf->out += size;  87     return size;  88 }  89 //向缓冲区中存放数据

 90 uint32_t __ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)  91 {  92     assert(ring_buf || buffer);  93     uint32_t len = 0;  94     size = min(size, ring_buf->size - ring_buf->in + ring_buf->out);  95     /* first put the data starting from fifo->in to buffer end */

 96     len  = min(size, ring_buf->size - (ring_buf->in & (ring_buf->size - 1)));  97     memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf->size - 1)), buffer, len);  98     /* then put the rest (if any) at the beginning of the buffer */

 99     memcpy(ring_buf->buffer, buffer + len, size - len); 100     ring_buf->in += size; 101     return size; 102 } 103 

104 uint32_t ring_buffer_len(const struct ring_buffer *ring_buf) 105 { 106     uint32_t len = 0; 107     pthread_mutex_lock(ring_buf->f_lock); 108     len = __ring_buffer_len(ring_buf); 109     pthread_mutex_unlock(ring_buf->f_lock); 110     return len; 111 } 112 

113 uint32_t ring_buffer_get(struct ring_buffer *ring_buf, void *buffer, uint32_t size) 114 { 115  uint32_t ret; 116     pthread_mutex_lock(ring_buf->f_lock); 117     ret = __ring_buffer_get(ring_buf, buffer, size); 118     //buffer中没有数据

119     if (ring_buf->in == ring_buf->out) 120     ring_buf->in = ring_buf->out = 0; 121     pthread_mutex_unlock(ring_buf->f_lock); 122     return ret; 123 } 124 

125 uint32_t ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size) 126 { 127  uint32_t ret; 128     pthread_mutex_lock(ring_buf->f_lock); 129     ret = __ring_buffer_put(ring_buf, buffer, size); 130     pthread_mutex_unlock(ring_buf->f_lock); 131     return ret; 132 } 133 #endif

采用多线程模拟生产者和消费者编写测试程序,如下所示:

 1 /**@brief ring buffer测试程序,创建两个线程,一个生产者,一个消费者。  2  * 生产者每隔1秒向buffer中投入数据,消费者每隔2秒去取数据。  3  *@atuher Anker date:2013-12-18  4  * */

 5 #include "ring_buffer.h"

 6 #include <pthread.h>

 7 #include <time.h>

 8 

 9 #define BUFFER_SIZE  1024 * 1024

 10 

 11 typedef struct student_info  12 {  13  uint64_t stu_id;  14  uint32_t age;  15  uint32_t score;  16 }student_info;  17 

 18 

 19 void print_student_info(const student_info *stu_info)  20 {  21  assert(stu_info);  22     printf("id:%lu\t",stu_info->stu_id);  23     printf("age:%u\t",stu_info->age);  24     printf("score:%u\n",stu_info->score);  25 }  26 

 27 student_info * get_student_info(time_t timer)  28 {  29     student_info *stu_info = (student_info *)malloc(sizeof(student_info));  30     if (!stu_info)  31  {  32     fprintf(stderr, "Failed to malloc memory.\n");  33     return NULL;  34  }  35  srand(timer);  36     stu_info->stu_id = 10000 + rand() % 9999;  37     stu_info->age = rand() % 30;  38     stu_info->score = rand() % 101;  39  print_student_info(stu_info);  40     return stu_info;  41 }  42 

 43 void * consumer_proc(void *arg)  44 {  45     struct ring_buffer *ring_buf = (struct ring_buffer *)arg;  46  student_info stu_info;  47     while(1)  48  {  49     sleep(2);  50     printf("------------------------------------------\n");  51     printf("get a student info from ring buffer.\n");  52     ring_buffer_get(ring_buf, (void *)&stu_info, sizeof(student_info));  53     printf("ring buffer length: %u\n", ring_buffer_len(ring_buf));  54     print_student_info(&stu_info);  55     printf("------------------------------------------\n");  56  }  57     return (void *)ring_buf;  58 }  59 

 60 void * producer_proc(void *arg)  61 {  62  time_t cur_time;  63     struct ring_buffer *ring_buf = (struct ring_buffer *)arg;  64     while(1)  65  {  66     time(&cur_time);  67  srand(cur_time);  68     int seed = rand() % 11111;  69     printf("******************************************\n");  70     student_info *stu_info = get_student_info(cur_time + seed);  71     printf("put a student info to ring buffer.\n");  72     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));  73     printf("ring buffer length: %u\n", ring_buffer_len(ring_buf));  74     printf("******************************************\n");  75     sleep(1);  76  }  77     return (void *)ring_buf;  78 }  79 

 80 int consumer_thread(void *arg)  81 {  82     int err;  83  pthread_t tid;  84     err = pthread_create(&tid, NULL, consumer_proc, arg);  85     if (err != 0)  86  {  87     fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n",  88  errno, strerror(errno));  89     return -1;  90  }  91     return tid;  92 }  93 int producer_thread(void *arg)  94 {  95     int err;  96  pthread_t tid;  97     err = pthread_create(&tid, NULL, producer_proc, arg);  98     if (err != 0)  99  { 100     fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n", 101  errno, strerror(errno)); 102     return -1; 103  } 104     return tid; 105 } 106 

107 

108 int main() 109 { 110     void * buffer = NULL; 111     uint32_t size = 0; 112     struct ring_buffer *ring_buf = NULL; 113  pthread_t consume_pid, produce_pid; 114 

115     pthread_mutex_t *f_lock = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t)); 116     if (pthread_mutex_init(f_lock, NULL) != 0) 117  { 118     fprintf(stderr, "Failed init mutex,errno:%u,reason:%s\n", 119  errno, strerror(errno)); 120     return -1; 121  } 122     buffer = (void *)malloc(BUFFER_SIZE); 123     if (!buffer) 124  { 125     fprintf(stderr, "Failed to malloc memory.\n"); 126     return -1; 127  } 128     size = BUFFER_SIZE; 129     ring_buf = ring_buffer_init(buffer, size, f_lock); 130     if (!ring_buf) 131  { 132     fprintf(stderr, "Failed to init ring buffer.\n"); 133     return -1; 134  } 135 #if 0

136     student_info *stu_info = get_student_info(638946124); 137     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info)); 138     stu_info = get_student_info(976686464); 139     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info)); 140     ring_buffer_get(ring_buf, (void *)stu_info, sizeof(student_info)); 141  print_student_info(stu_info); 142 #endif

143     printf("multi thread test.......\n"); 144     produce_pid  = producer_thread((void*)ring_buf); 145     consume_pid  = consumer_thread((void*)ring_buf); 146  pthread_join(produce_pid, NULL); 147  pthread_join(consume_pid, NULL); 148  ring_buffer_free(ring_buf); 149  free(f_lock); 150     return 0; 151 }

测试结果如下所示:

linux内核数据结构之kfifo

4、参考资料

http://blog.csdn.net/linyt/article/details/5764312

http://en.wikipedia.org/wiki/Circular_buffer

http://yiphon.diandian.com/post/2011-09-10/4918347

你可能感兴趣的:(linux)