2013 Multi-University Training Contest 4

HDU-4632 Palindrome subsequence

题意:给定一个字符串,长度最长为1000,问该串有多少个回文子串。

分析:设dp[i][j]表示从 i 到 j 有多少个回文子串,则有动态规划方程:

str[i] != str[j]:dp[i][j] = dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1];
str[i]  = str[j]:dp[i][j] = dp[i+1][j] + dp[i][j-1] + 1.

2013 Multi-University Training Contest 4
#include <cstdlib>

#include <cstdio>

#include <cstring>

#include <iostream>

#include <algorithm>

using namespace std;



const int mod = 10007;

const int N = 1005;

char str[N];

int f[N][N];



int solve(int len) {

    memset(f, 0, sizeof (f));

    for (int i = 0; i < len; ++i) {

        f[i][i] = 1;

    }

    for (int k = 2; k <= len; ++k) { // 枚举长度 

        for (int i = 0, j; i < len && (j=i+k-1) < len; ++i) {

            if (str[i] == str[j]) {

                f[i][j] = (f[i][j-1] + f[i+1][j] + 1) % mod;

            } else {

                f[i][j] = ((f[i][j-1] + f[i+1][j] - f[i+1][j-1]) % mod + mod) % mod;

            }

        }

    }

    return f[0][len-1];

}



int main() {

    int T, ca = 0;

    scanf("%d", &T);

    while (T--) {

        scanf("%s", str);

        int len = strlen(str);

        printf("Case %d: %d\n", ++ca, solve(len));

    }

    return 0;    

}
View Code

 

HDU-4638 Group

题意:给定一个序列(1-N的全排列),问任意一个区间内若将所有的数排序后,能够形成多少个不连续的子序列。

分析:对于每一个数字,记录其左边的数字和右边的数字所在的位置,然后根据相互关系维护好一个线段数量的树状数组。

2013 Multi-University Training Contest 4
#include <cstdlib>

#include <cstdio>

#include <cstring>

#include <iostream>

#include <algorithm>

using namespace std;



void getint(int &);



struct Node {

    int No, l, r;

    void read(int _No) {

        getint(l), getint(r);

        No = _No;

    }

    bool operator < (const Node &t) const {

        return r > t.r;

    }

};

const int N = 100005;

int seq[N], pos[N];

int n, m;

int bit[N];

int ans[N];

Node e[N];



inline int lowbit(int x) {

    return x & -x;

}



void add(int x, int val) {

    for (int i = x; i <= n; i+=lowbit(i)) {

        bit[i] += val;

    }

}



int sum(int x) {

    int ret = 0;

    for (int i = x; i > 0; i-=lowbit(i)) {

        ret += bit[i];    

    }

    return ret;

}



void getint(int &t) {

    char ch;

    while ((ch = getchar()), ch < '0' || ch > '9') ;

    t = ch - '0';

    while ((ch = getchar()), ch >= '0' && ch <= '9') t = t * 10 + ch - '0';

}



int main() {

    int T;

    scanf("%d", &T);

    while (T--) {

        memset(bit, 0, sizeof (bit));

        scanf("%d %d", &n, &m);

        for (int i = 1; i <= n; ++i) {

            getint(seq[i]);

            pos[seq[i]] = i;

        }

        for (int i = 1; i <= m; ++i) {

            e[i].read(i);

        }

        sort(e+1, e+1+m);

        for (int i = n; i >= 1; --i) {

            int cnt = 0;

            if (seq[i] > 1 && pos[seq[i]-1] > i) ++cnt;

            if (seq[i] < n && pos[seq[i]+1] > i) ++cnt;

            if (cnt == 0) add(i, 1);

            else if (cnt == 2) add(i, -1);

        }

        int last = n;

        for (int i = 1; i <= m; ++i) {

            for (int j = last; j > e[i].r; --j) {

                if (seq[j] > 1 && pos[seq[j]-1] < j) add(pos[seq[j]-1], 1);

                if (seq[j] < n && pos[seq[j]+1] < j) add(pos[seq[j]+1], 1);

            }

            last = e[i].r;

            ans[e[i].No] = sum(e[i].r)-sum(e[i].l-1);

        }

        for (int i = 1; i <= m; ++i) {

            printf("%d\n", ans[i]);

        }

    }

    return 0;    

}
View Code

 

HDU-4640 Island and study-sister

题意:给定N个点,N最大为17,问从最多3个人从1号点出发到指定的K个点所花的时间最短为多少?(所花时间以到达最后一个点为准)。要求三个人的路线中不能够存在相同的点。

分析:首先通过一次dfs搜索出单个人走出某种状态所需要的最小代价,f[i][j]表示 i 状态到 j 号节点停止的最小花费。这里有一个地方要注意就是记得某个点最后到达 j 点那么也可以由上一个状态最后到达 j 点转移过来,相当于走一个点又返回到原来的位置。紧接着再通过一个dp[i]表示走出 i 状态所需的最小花费,也举是从所有停止点中取出一个最小的,最后再对dp[i]进行一些修正,将其意义变为 i 状态中若存在目标点那么这些点一定要走,而其他的点则可以由该位为空的状态递推过来取一个较小值。这样做的目的是为了后面直接枚举3^n(即将每个点分配给三个人的某一个的组合情况)来得到最终结果,否则的话如果仅仅枚举K个点的情况,那么对于剩下的点又要进行一次讨论,时间复杂度上升了。

2013 Multi-University Training Contest 4
#include <cstdlib>

#include <cstring>

#include <cstdio>

#include <iostream>

#include <algorithm>

using namespace std;



const int inf = 0x3f3f3f3f;

int n, m, K, esta;

int mp[20][20];

int f[1<<17][20]; // f[i][j]表示到达状态i,停在j的最少花费 

char vis[1<<17][20];

int dp[1<<17];

int ret;



int dfs(int sta, int e) {

    if (vis[sta][e]) return f[sta][e];

    vis[sta][e] = 1;

    for (int i = 1; i < n; ++i) {

        if (i == e) continue;

        if ((sta & (1 << i)) && mp[e][i] != inf) {

            f[sta][e] = min(f[sta][e], 2*mp[e][i] + dfs(sta^(1<<i), e));    

        }

    }

    int pre = sta ^ (1 << e);

    if (e != 0) {

        for (int i = 0; i < n; ++i) { // 起始点将由于pre的不同而不同,当pre反应只可能有0号节点来时将枚举0 

            if ((pre & (1 << i)) && mp[i][e] != inf) { // 说明两点之间有边相连

                f[sta][e] = min(f[sta][e], mp[i][e] + dfs(pre, i));

            }

        }

    }

    return f[sta][e];

}



void gao(int s1, int s2, int s3, int deep) {

    if (deep == n) {

        ret = min(ret, max(dp[s1], max(dp[s2], dp[s3])));

        return;

    }

    gao(s1|(1<<deep), s2, s3, deep+1);

    gao(s1, s2|(1<<deep), s3, deep+1);

    gao(s1, s2, s3|(1<<deep), deep+1);

}



int solve() {

    // 处理出一次经过若干个节点的最短距离

    memset(f, 0x3f, sizeof (f));

    memset(vis, 0, sizeof (vis));

    memset(dp, 0x3f, sizeof (dp));

    ret = inf;

    int LIM = 1 << n;

    f[1][0] = 0; // 初始化从第1个节点出发

    for (int i = 1; i < LIM; ++i) {

        for (int j = 0; j < n; ++j) {

            if (i & (1 << j)) dfs(i, j);    

        }

    }

    // 之后处理利用三次机会的组合情况

    for (int i = 1; i < LIM; ++i) {

        for (int j = 0; j < n; ++j) {

            dp[i] = min(dp[i], f[i][j]);

        }

    }

    for (int i = 1; i < LIM; ++i) {

        for (int j = 0; j < n; ++j) {

            if (i & (1 << j) && !(esta & (1<<j))) {

                dp[i] = min(dp[i], dp[i^(1<<j)]);

            }

        }

    }

    gao(1, 1, 1, 1);

    return ret == inf ? -1 : ret;

}



int main() {

    int T, ca = 0;

    scanf("%d", &T);

    while (T--) {

        memset(mp, 0x3f, sizeof (mp));

        esta = 1; // 路线中一定包含源点 

        scanf("%d %d", &n, &m);

        int a, b, c;

        for (int i = 0; i < m; ++i) {

            scanf("%d %d %d", &a, &b, &c);

            --a, --b;

            mp[a][b] = mp[b][a] = min(mp[a][b], c);

        }

        scanf("%d", &K);

        for (int i = 0; i < K; ++i) {

            scanf("%d", &c);

            esta = esta | (1 << c-1);

        }

        printf("Case %d: %d\n", ++ca, solve());

    }

    return 0;    

}
View Code

 

 

你可能感兴趣的:(test)