概述
以前自己都利用别人搭好的工程,修改过来用,很少把模型搭建、导出模型、加载模型运行走一遍,搞了一遍才知道这个事情也不是那么简单的。
搭建模型和导出模型
参考《TensorFlow固化模型》,导出固化的模型有两种方式.
方式1:导出pb图结构和ckpt文件,然后用 freeze_graph 工具冻结生成一个pb(包含结构和参数)
在我的代码里测试了生成pb图结构和ckpt文件,但是没接着往下走,感觉有点麻烦。我用的是第二种方法。
注意我这里只在最后保存了一次ckpt,实际应该在训练中每隔一段时间就保存一次的。
saver = tf.train.Saver(max_to_keep=5) #tf.train.write_graph(session.graph_def, FLAGS.model_dir, "nn_model.pbtxt", as_text=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) max_step = 2000 for i in range(max_step): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) # 保存pb和ckpt print('save pb file and ckpt file') tf.train.write_graph(sess.graph_def, graph_location, "graph.pb",as_text=False) checkpoint_path = os.path.join(graph_location, "model.ckpt") saver.save(sess, checkpoint_path, global_step=max_step)
方式2:convert_variables_to_constants
我实际使用的就是这种方法。
看名字也知道,就是把变量转化为常量保存,这样就可以愉快的加载使用了。
注意这里需要指明保存的输出节点,我的输出节点为'out/fc2'(我猜测会根据输出节点的依赖推断哪些部分是训练用到的,推理时用不到)。关于输出节点的名字是有规律的,其中out是一个name_scope名字,fc2是op节点的名字。
with tf.Session() as sess: sess.run(tf.global_variables_initializer()) max_step = 2000 for i in range(max_step): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) print('save frozen file') pb_path = os.path.join(graph_location, 'frozen_graph.pb') print('pb_path:{}'.format(pb_path)) # 固化模型 output_graph_def = convert_variables_to_constants(sess, sess.graph_def, output_node_names=['out/fc2']) with tf.gfile.FastGFile(pb_path, mode='wb') as f: f.write(output_graph_def.SerializeToString())
上述代码会在训练后把训练好的计算图和参数保存到frozen_graph.pb文件。后续就可以用这个模型来测试图片了。
方式2的完整训练和保存模型代码
主要看main函数就行。另外注意deepnn函数最后节点的名字。
"""A deep MNIST classifier using convolutional layers. See extensive documentation at https://www.tensorflow.org/get_started/mnist/pros """ # Disable linter warnings to maintain consistency with tutorial. # pylint: disable=invalid-name # pylint: disable=g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tempfile import os from tensorflow.examples.tutorials.mnist import input_data from tensorflow.python.framework.graph_util import convert_variables_to_constants import tensorflow as tf FLAGS = None def deepnn(x): """deepnn builds the graph for a deep net for classifying digits. Args: x: an input tensor with the dimensions (N_examples, 784), where 784 is the number of pixels in a standard MNIST image. Returns: A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values equal to the logits of classifying the digit into one of 10 classes (the digits 0-9). keep_prob is a scalar placeholder for the probability of dropout. """ # Reshape to use within a convolutional neural net. # Last dimension is for "features" - there is only one here, since images are # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc. with tf.name_scope('reshape'): x_image = tf.reshape(x, [-1, 28, 28, 1]) # First convolutional layer - maps one grayscale image to 32 feature maps. with tf.name_scope('conv1'): W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # Pooling layer - downsamples by 2X. with tf.name_scope('pool1'): h_pool1 = max_pool_2x2(h_conv1) # Second convolutional layer -- maps 32 feature maps to 64. with tf.name_scope('conv2'): W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # Second pooling layer. with tf.name_scope('pool2'): h_pool2 = max_pool_2x2(h_conv2) # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image # is down to 7x7x64 feature maps -- maps this to 1024 features. with tf.name_scope('fc1'): W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # Dropout - controls the complexity of the model, prevents co-adaptation of # features. with tf.name_scope('dropout'): keep_prob = tf.placeholder(tf.float32, name='ratio') h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # Map the 1024 features to 10 classes, one for each digit with tf.name_scope('out'): W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.add(tf.matmul(h_fc1_drop, W_fc2), b_fc2, name='fc2') return y_conv, keep_prob def conv2d(x, W): """conv2d returns a 2d convolution layer with full stride.""" return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): """max_pool_2x2 downsamples a feature map by 2X.""" return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def weight_variable(shape): """weight_variable generates a weight variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): """bias_variable generates a bias variable of a given shape.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def main(_): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir) # Create the model with tf.name_scope('input'): x = tf.placeholder(tf.float32, [None, 784], name='x') # Define loss and optimizer y_ = tf.placeholder(tf.int64, [None]) # Build the graph for the deep net y_conv, keep_prob = deepnn(x) with tf.name_scope('loss'): cross_entropy = tf.losses.sparse_softmax_cross_entropy( labels=y_, logits=y_conv) cross_entropy = tf.reduce_mean(cross_entropy) with tf.name_scope('adam_optimizer'): train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(y_conv, 1), y_) correct_prediction = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(correct_prediction) graph_location = './model' print('Saving graph to: %s' % graph_location) train_writer = tf.summary.FileWriter(graph_location) train_writer.add_graph(tf.get_default_graph()) saver = tf.train.Saver(max_to_keep=5) #tf.train.write_graph(session.graph_def, FLAGS.model_dir, "nn_model.pbtxt", as_text=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) max_step = 2000 for i in range(max_step): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) # save pb file and ckpt file #print('save pb file and ckpt file') #tf.train.write_graph(sess.graph_def, graph_location, "graph.pb", as_text=False) #checkpoint_path = os.path.join(graph_location, "model.ckpt") #saver.save(sess, checkpoint_path, global_step=max_step) print('save frozen file') pb_path = os.path.join(graph_location, 'frozen_graph.pb') print('pb_path:{}'.format(pb_path)) output_graph_def = convert_variables_to_constants(sess, sess.graph_def, output_node_names=['out/fc2']) with tf.gfile.FastGFile(pb_path, mode='wb') as f: f.write(output_graph_def.SerializeToString()) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='./data', help='Directory for storing input data') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
加载模型进行推理
上一节已经训练并导出了frozen_graph.pb。
这一节把它运行起来。
加载模型
下方的代码用来加载模型。推理时计算图里共两个placeholder需要填充数据,一个是图片(这不废话吗),一个是drouout_ratio,drouout_ratio用一个常量作为输入,后续就只需要输入图片了。
graph_location = './model' pb_path = os.path.join(graph_location, 'frozen_graph.pb') print('pb_path:{}'.format(pb_path)) newInput_X = tf.placeholder(tf.float32, [None, 784], name="X") drouout_ratio = tf.constant(1., name="drouout") with open(pb_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) output = tf.import_graph_def(graph_def, input_map={'input/x:0': newInput_X, 'dropout/ratio:0':drouout_ratio}, return_elements=['out/fc2:0'])
input_map参数并不是必须的。如果不用input_map,可以在run之前用tf.get_default_graph().get_tensor_by_name获取tensor的句柄。但是我觉得这种方法不是很友好,我这里没用这种方法。
注意input_map里的tensor名字是和搭计算图时的name_scope和op名字有关的,而且后面要补一个‘:0'(这点我还没细究)。
同时要注意,newInput_X的形状是[None, 784],第一维是batch大小,推理时和训练要一致。
(我用的是mnist图片,训练时每个bacth的形状是[batchsize, 784],每个图片是28x28)
运行模型
我是一张张图片单独测试的,运行模型之前先把图片变为[1, 784],以符合newInput_X的维数。
with tf.Session( ) as sess: file_list = os.listdir(test_image_dir) # 遍历文件 for file in file_list: full_path = os.path.join(test_image_dir, file) print('full_path:{}'.format(full_path)) # 只要黑白的,大小控制在(28,28) img = cv2.imread(full_path, cv2.IMREAD_GRAYSCALE ) res_img = cv2.resize(img,(28,28),interpolation=cv2.INTER_CUBIC) # 变成长784的一维数据 new_img = res_img.reshape((784)) # 增加一个维度,变为 [1, 784] image_np_expanded = np.expand_dims(new_img, axis=0) image_np_expanded.astype('float32') # 类型也要满足要求 print('image_np_expanded shape:{}'.format(image_np_expanded.shape)) # 注意注意,我要调用模型了 result = sess.run(output, feed_dict={newInput_X: image_np_expanded}) # 出来的结果去掉没用的维度 result = np.squeeze(result) print('result:{}'.format(result)) #print('result:{}'.format(sess.run(output, feed_dict={newInput_X: image_np_expanded}))) # 输出结果是长度为10(对应0-9)的一维数据,最大值的下标就是预测的数字 print('result:{}'.format( (np.where(result==np.max(result)))[0][0] ))
注意模型的输出是一个长度为10的一维数组,也就是计算图里全连接的输出。这里没有softmax,只要取最大值的下标即可得到结果。
输出结果:
full_path:./test_images/97_7.jpg image_np_expanded shape:(1, 784) result:[-1340.37145996 -283.72436523 1305.03320312 437.6053772 -413.69961548 -1218.08166504 -1004.83807373 1953.33984375 42.00457001 -504.43829346] result:7 full_path:./test_images/98_6.jpg image_np_expanded shape:(1, 784) result:[ 567.4041748 -550.20904541 623.83496094 -1152.56884766 -217.92695618 1033.45239258 2496.44750977 -1139.23620605 -5.64091825 -615.28491211] result:6 full_path:./test_images/99_9.jpg image_np_expanded shape:(1, 784) result:[ -532.26409912 -1429.47277832 -368.58096313 505.82876587 358.42163086 -317.48199463 -1108.6829834 1198.08752441 289.12286377 3083.52539062] result:9
加载模型进行推理的完整代码
import sys import os import cv2 import numpy as np import tensorflow as tf test_image_dir = './test_images/' graph_location = './model' pb_path = os.path.join(graph_location, 'frozen_graph.pb') print('pb_path:{}'.format(pb_path)) newInput_X = tf.placeholder(tf.float32, [None, 784], name="X") drouout_ratio = tf.constant(1., name="drouout") with open(pb_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) #output = tf.import_graph_def(graph_def) output = tf.import_graph_def(graph_def, input_map={'input/x:0': newInput_X, 'dropout/ratio:0':drouout_ratio}, return_elements=['out/fc2:0']) with tf.Session( ) as sess: file_list = os.listdir(test_image_dir) # 遍历文件 for file in file_list: full_path = os.path.join(test_image_dir, file) print('full_path:{}'.format(full_path)) # 只要黑白的,大小控制在(28,28) img = cv2.imread(full_path, cv2.IMREAD_GRAYSCALE ) res_img = cv2.resize(img,(28,28),interpolation=cv2.INTER_CUBIC) # 变成长784的一维数据 new_img = res_img.reshape((784)) # 增加一个维度,变为 [1, 784] image_np_expanded = np.expand_dims(new_img, axis=0) image_np_expanded.astype('float32') # 类型也要满足要求 print('image_np_expanded shape:{}'.format(image_np_expanded.shape)) # 注意注意,我要调用模型了 result = sess.run(output, feed_dict={newInput_X: image_np_expanded}) # 出来的结果去掉没用的维度 result = np.squeeze(result) print('result:{}'.format(result)) #print('result:{}'.format(sess.run(output, feed_dict={newInput_X: image_np_expanded}))) # 输出结果是长度为10(对应0-9)的一维数据,最大值的下标就是预测的数字 print('result:{}'.format( (np.where(result==np.max(result)))[0][0] ))
以上这篇tensorflow 20:搭网络,导出模型,运行模型的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。