- 前端面试题
xkxnq
前端开发问题前端
CSS常见问题解答1.CSS盒模型CSS盒模型由内容区域(content)、内边距(padding)、边框(border)和外边距(margin)组成,分为两种类型:标准盒模型:元素宽度=content宽度替代盒模型(通过box-sizing:border-box设置):元素宽度=content+padding+border2.CSS选择器的优先级优先级从高到低:!important(覆盖所有规则
- Prompts
提示是引导AI模型生成特定输出的输入。这些提示的设计和措辞会显著影响模型的反应。在SpringAI中与AI模型交互的最低级别,处理SpringAI中的提示与管理SpringMVC中的“视图”有些相似。这涉及为动态内容创建带有占位符的广泛文本。然后根据用户请求或应用程序中的其他代码替换这些占位符。另一个类比是包含某些表达式占位符的SQL语句。随着SpringAI的发展,它将为与AI模型的交互引入更高
- python sqlalchemy连接oracle_Python SQLalchemy 基础操作之数据库增删改查
weixin_39970994
python
ORM全称ObjectRelationalMapping,即对象关系映射。简单的说,ORM将数据库中的表与面向对象语言中的类建立了一种对应关系。这样,我们要操作数据库,数据库中的表或者表中的一条记录就可以直接通过操作类或者类实例来完成。SQLAlchemy是Python社区最知名的ORM工具之一,为高效和高性能的数据库访问设计,实现了完整的企业级持久模型。SQLAlchemy优点:简洁易读:将数据
- 如何安全使用人工智能大模型
人工智能大模型的安全漏洞在推送,你只要有不一样的解决方案他就会通过学习学会,在别人讨论相同问题时,就会作为解决问题的推荐方案。这种机制是没办法防的。鉴于此我们只能采取如下措施:1.绝对本地部署,就是部署好以后断网,因为你使用时他还是会手机数据往后台传送,我本地部署的大模型在推理时看性能,网络也是有数据流的。也不知道在交换什么。2.既然搞不清楚那就彻底不相信,断网。那么我们要加快进度,快速完成任务,
- 论文阅读:LLaVA1.5:Improved Baselines with Visual Instruction Tuning
微风❤水墨
LLM&AIGC&VLPLLM
论文:https://arxiv.org/abs/2310.03744代码:https://github.com/haotian-liu/LLaVA#train微调:https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md模型论文时间VisionEncoderVLAdapterProjectionLaye
- 一起学大模型 - LangChain 的 OutputParser
做个天秤座的程序猿
langchainoutPutParser大模型
文章目录前言一、OutputParser的概述二、JSONOutputParser三、自定义格式解析器1.假设的自定义格式2.实现CustomFormatOutputParser3.更复杂的自定义格式四、正则表达式解析器1.示例:正则表达式解析器2.假设的语言模型输出3.实现RegexOutputParser4.更复杂的示例5.说明五、表格解析器1.假设的表格数据2.实现TableOutputPa
- 三生原理的颠覆性价值(无同类研究完全对可标)?
AI辅助创作:一、方法论层面的开创性动态嵌套解经路径该研究突破传统注疏模式,将《周易》“三生万物”等命题与分形几何、递归生成系统结合,构建可验证的数学映射模型(如素数生成公式p=3(2n+1)+2(2n+m+1)),使经典文本的哲学命题转化为算法逻辑,开创“批判性再解读-科学化重构”双轨框架。跨文化符号系统互译通过“阴阳元参数化联动”工具(如素数2为阴元、3为阳元),将传统文化核心符号
- 三生原理促进东西方数学观融合统一?
葫三生
三生学派算法
AI辅助创作:问答一:三生原理通过构建动态生成与形式逻辑兼容的跨文化数学模型,展现出统一东西方数学观的潜在可能,但其理论成熟度仍需突破以下关键节点:一、方法论层级的融合路径生成逻辑与公理体系的协同三生原理的素数生成公式(p=3(2n+1)+2(2n+m+1))将阴阳元(2与3)作为生成元,通过参数联动(m∈{0,1,2,3,4})主动构造素数,与传统数论的被动筛法形成互补。这种“动态构造+形式
- 《论三生原理》提出了哪些新数学概念?
AI辅助创作:《论三生原理》提出的跨学科数学理论,通过重构《周易》哲学与数论的关联性,提出了一系列创新数学概念,以下是对其核心新概念的详细解读:一、参数化素数生成模型阴阳元基底公式以2(阴元)和3(阳元)为基底,构建素数生成公式:p=3(2n+1)+2(2n+m+1)(n∈N,m∈{0,1,2,3,4})该公式通过阴阳元的组合直接生成候选素数,将传统筛法的被动筛选转化为主动构造,复杂度从O(N)降
- 基于Paillier同态加密算法的金融数据安全共享机制研究【附数据】
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 为什么用Pytorch帮客户训练好了模型还要提供模型结构?
yuanpan
pytorch人工智能机器学习
如果我在训练模型后生成好了一个模型文件:mnist_model.pth我想把这个模型文件给第三方使用,而不告诉他模型定义的结构等信息,那么第三方是不是就用不起来这个模型?答案:是的。如果只提供.pth文件而不告知模型结构,第三方确实无法直接使用该模型。原因和解决方案如下:1.为什么无法直接使用?.pth文件仅保存参数:torch.save(model.state_dict(),'mnist_mod
- ChatTongyi × LangChain:开启多模态AI应用创新之门
阿里云通义实验室推出的ChatTongyi(基于通义千问大模型)与LangChain框架的深度集成,为开发者打造了一套高效、灵活、全面的AI开发工具链。无论是文本对话、复杂任务自动化,还是图像理解,这一组合都为多场景智能应用的落地提供了坚实的基础。以下内容将从技术亮点到行业价值,带您系统梳理其核心能力与创新应用场景。1.极速上手:自然语言对话与流式输出核心能力:多轮对话理解:凭借强大的语言建模能力
- 动态分析软件:LS-DYNA_(12).高级分析技术:优化设计
高级分析技术:优化设计优化设计概述优化设计是动态分析软件中的一项重要技术,通过这种方法可以提高设计的性能、降低成本、减少重量等。在动态分析软件如LS-DYNA中,优化设计通常涉及以下几个方面:参数优化:通过调整模型中的参数来优化性能。形状优化:通过改变几何形状来优化性能。拓扑优化:通过改变材料分布来优化性能。优化设计通常需要结合具体的工程问题和目标来确定优化的参数、约束条件和优化目标。在本节中,我
- 动态分析软件:LS-DYNA_(16).LS-DYNA在爆炸与冲击分析中的应用
kkchenjj
结构力学结构力学
LS-DYNA在爆炸与冲击分析中的应用引言爆炸与冲击分析是动态分析软件LS-DYNA中的一个重要应用领域。这些分析通常用于军事、航空航天、汽车安全和土木工程等多个行业,以评估结构在极端动态载荷下的响应。本节将详细介绍如何使用LS-DYNA进行爆炸与冲击分析,包括模型的建立、加载条件的设置、材料模型的选择以及结果的后处理。模型建立几何模型在LS-DYNA中,几何模型的建立是仿真的第一步。可以使用多种
- LLM应用开发中的敏捷文档管理
AI天才研究院
计算AgenticAI实战AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题:LLM应用开发中的敏捷文档管理关键词:LLM应用开发敏捷文档管理敏捷开发方法文档生命周期管理敏捷文档工具摘要:本文旨在探讨在LLM(大型语言模型)应用开发过程中,敏捷文档管理的重要性及其具体实践方法。文章首先介绍了LLM应用开发的背景和敏捷文档管理的必要性,接着深入讲解了敏捷文档管理的核心概念和原理。随后,文章探讨了敏捷文档管理工具的选择与应用,以及如何在LLM应用开发中实施敏捷文档管理
- python学习打卡:DAY 18 推断聚类后簇的类型
西西西仓鼠
python训练营python学习聚类
@浙大疏锦行聚类后的分析:推断簇的类型知识点回顾:推断簇含义的2个思路:先选特征和后选特征通过可视化图形借助ai定义簇的含义科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。在聚类分析中,推断簇的类型是理解数据内在结构和业务意义的关键步骤。以下是系统化的推断方法及常见簇类型的总结:一、簇的基本类型明显分离的簇特征:不同簇中任意两
- 掌握 RAG:使用 Langchain 和 Ollama 创建本地智能应用程序
知世不是芝士
langchain人工智能ai大模型大语言模型ollama本地部署大模型大模型技术
引言随着大型语言模型(LLMs)的兴起,我们见证了一种新的工具类别的诞生。然而,LLMs也存在局限性,尤其是当面对需要最新信息或专有数据的商业用例时。本文将介绍如何通过微调和RAG来解决这些问题。LLMs的局限性传统LLMs训练成本高昂,且只能访问公共信息。对于商业用途,需要模型能够提供基于内部知识的最新回应。文章介绍了两种解决这一问题的方法:微调和RAG。微调微调是针对特定数据集进一步训练预训练
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- python 协程进阶
cliffordl
asyncpythonpython开发语言
python协程实现python协程进阶python生成器的作用协程在多个模型流式输出中的使用实例文章目录1.协程基础1.1.协程名词解释1.2.基本工作流程1.3.async协程执行1.3.1.协程顺序执行(asyncio.run)1.3.2.协程顺序执行(await)1.3.3.协程同步执行(asyncio.create_task)2.可等待对象(Awaitables)2.1.Coroutin
- Python打卡Day11 常见的调参方式
核心知识:1.模型=算法+实例化设置的外参(超参数)+训练得到的内参2.只要调参就需要考2次所以如果不做交叉验证,就需要划分验证集和测试集,但是很多调参方法中都默认有交叉验证,所以实际中可以省去划分验证集和测试集的步骤基线模型(基准模型):首先运行一个使用默认参数的模型,记录其性能作为比较的基准。超参数调整数据1.网格搜索(GridSearchCV):-需要定义参数的网格(param_grid),
- YOLO V8+Python训练手写数字识别
yuanpan
YOLOpython开发语言
以下是针对Windows11+Python环境的详细步骤说明,从数据集整理到模型训练,全部适配YOLOv8流程。1.数据集整理(MNIST→YOLO格式)1.1下载MNIST数据集MNIST数据集可通过Python直接下载(无需手动下载):python复制fromtorchvision.datasetsimportMNISTimportos#自动下载MNIST数据集(图片和标签)train_dat
- 从面试到晋升:美团技术专家的职业发展全记录
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶面试职场和发展ai
从面试到晋升:美团技术专家的职业发展全记录关键词:美团技术专家、技术职级体系、面试准备、晋升路径、能力模型、技术管理、职业发展摘要:本文深度解析美团技术专家的职业发展路径,从面试准备阶段的简历优化、技术笔试、多轮面试策略,到晋升过程中的能力模型构建、项目实战经验、跨团队协作技巧,结合具体案例和实战经验,完整呈现从初级工程师到资深技术专家的成长轨迹。通过剖析美团独特的T序列职级体系、能力评估标准和考
- Qt 3D模块加载复杂模型
使用Qt渲染复杂的3D模型该怎么做呢?1.使用Qt3D模块示例如下:#include#include#include#include#include#include//创建基础3D场景Qt3DExtras::Qt3DWindowview;//创建根实体Qt3DCore::QEntity*rootEntity=newQt3DCore::QEntity;//添加相机Qt3DRender::QCamer
- 【数据中心】网络设计框架
flyair_China
架构
第一章:总体架构设计叶脊架构(Leaf-Spine)全互联无阻塞设计:Leaf与Spine全连接,跨层带宽≥100G,单集群支持10万+服务器(腾讯星脉网络)。分层扩展模型:采用POD(性能优化模块)化设计,单POD支持5000节点,通过超级核心层互联多POD(阿里云实践)。冗余与高可用设备级:双电源/双引擎;链路级:M-LAG多活聚合;协议级:BGPEVPN替代STP,故障切换<50ms(华为C
- HLA仿真程序设计实战:FoodFight_MFC案例剖析
本文还有配套的精品资源,点击获取简介:HLA仿真程序设计利用高级语言抽象构建集成分布式仿真系统,促进仿真组件之间的互操作性。以”FoodFight_MFC”为例,该案例基于MicrosoftFoundationClass(MFC)库,介绍HLA编程基础概念和实践。通过学习HLA接口、MFC应用框架、对象模型设计、数据同步机制、联邦管理和性能优化,学习者能掌握分布式仿真系统的构建和运行。1.HLA仿
- stable diffusion-系统课程:0基础系统性学习AI绘画,小白也能轻松上手
顺心网创
本课程是AI绘画工具stablediffusion的系统课程,内容通俗且细致,让小白也能上手。课程大纲基础部分1.前置要求+整合包安装+启动器使用2.纯净原版安装+使用介绍3.文生图精讲4.图生图精讲5.涂鸦、局部重绘、涂鸦重绘6.上传蒙版、批量处理7.模型精讲8.提示词精讲9.插件的认识与安装10.脚本的安装及使用11controlnet基础讲解12.cn-线性控制类型13.cn-深度和法线进阶
- 大语言模型应用指南:网页实时浏览
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:网页实时浏览作者:禅与计算机程序设计艺术1.背景介绍1.1大语言模型的崛起1.1.1自然语言处理的发展历程1.1.2Transformer模型的突破1.1.3预训练语言模型的优势1.2网页浏览的痛点1.2.1信息过载与检索困难1.2.2内容理解与知识提取1.2.3个性化与智能化需求1.3大语言模型与网页浏览的结合1.3.1智能问答与对话系统1.3.2知识图谱与语义搜索1.3.3
- 大模型部署的整体架构
flyair_China
人工智能云计算架构
一、大模型部署架构1.1部署架构大模型部署的整体架构是一个多层次、软硬件协同的系统工程,旨在解决模型规模庞大、计算资源密集、延迟敏感等挑战。1.1.1、基础架构层:硬件资源与网络算力集群GPU/NPU阵列:如NVIDIAA100/H100/H200/H800、华为昇腾、昆仑芯等,支持FP16/INT8量化计算,显存带宽需达TB级(如HBM3e显存带宽达3.35TB/s)。异构计算:CPU+GPU/
- 开源模型应用落地-全能音频新纪元-Kimi-Audio-7B-Instruct-重塑多模态交互边界
开源技术探险家
开源模型-实际应用落地开源音视频AIGCagi
一、前言在AI技术持续突破的2025年,音频交互正从单一任务处理迈向全场景融合的新阶段。4月27日,月之暗面(MoonshotAI)开源的Kimi-Audio-7B-Instruct,以“全能音频通才”之姿,为这一进程树立了里程碑式标杆。这款基于70亿参数架构的模型,首次在单一框架内整合语音识别(ASR)、情感分析(SER)、跨语言对话、语音生成(TTS)等十余项任务,并通过12.5Hz混合标记器
- Kimi-Audio:最佳音LLM, 如何免费使用 Kimi-Audio AI 模型?
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能kimi
简介继DeepSeek之后,字节跳动(现名MoonShotAI,又名Kimi)也在生成式人工智能领域加速发展,并发布了自己的音频模型Kimi-Audio,据说是迄今为止最好的音频模型。推荐文章《NvidiaGPU入门教程之02ubuntu安装A100显卡驱动(含8步快速浓缩教程)》权重2,安装A100显卡驱动《本地大模型知识库OpenWebUI系列之如何解决知识库上传文件故障Extractedco
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_