Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7329 | Accepted: 3635 |
Description
Input
Output
Sample Input
2 7 9 ooo**oooo **oo*ooo* o*oo**o** ooooooooo *******oo o*o*oo*oo *******oo 10 1 * * * o * * * * * *
Sample Output
17 5
Source
提示:别被图片的圈圈误导了,看清楚题目,'*'是城市,'o'是空地,椭圆的天线覆盖范围要覆盖的是城市'*',而不是覆盖空地
题目大意:
一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,若放置一个基站,那么它至多可以覆盖相邻的两个城市。
问至少放置多少个基站才能使得所有的城市都覆盖无线?
解题思路:
思前想后,依稀可以认为是一道求二分图的最小路径覆盖问题
(注意不是最小点覆盖)
那么接下来需要确认的是,
究竟是求 有向二分图的最小路覆盖,还是求 无向二分图的最小路覆盖
因为有向和无向是截然不同的计算方法。
要确认是构造有向图,还是构造无向图,那么就需要先根据题意,看看构造二分图时所使用的方式,更适合构造哪一种二分图。
然后就进入了本题难点:如何构造二分图
首先要明确的是,输入的一堆“圈圈星星”可以看做是一张大地图,地图上有所有城市的坐标,但是这里有一个误区:不能简单地把城市的两个x、y坐标作为准备构造的二分图的两个顶点集。
城市才是要构造的二分图的顶点!
构造方法如下:
例如输入:
*oo
***
O*o
时,可以抽象为一个数字地图:
100
234
050
数字就是根据输入的城市次序作为该城市的编号,0代表该位置没有城市。
然后根据题目的“范围”规则,从第一个城市开始,以自身作为中心城市,向四个方向的城市进行连线(覆盖)
因此就能够得到边集:
e12 e21 e32 e43 e53
e23 e34
e35
可以看到,这些边都是有向边,但是每一条边都有与其对应的一条相反边。
即任意两个城市(顶点)之间的边是成对出现的
那么我们就可以确定下来,应该 构造无向二分图(其实无向=双向)
因为若要构造有向的二分图时,需要判断已出现的边,是很麻烦的工作
为了把有向图G构造为无向二分图,这里需要引入一个新名词“拆点”
其实就是把原有向图G的每一个顶点都”拆分(我认为复制更准确)”为2个点,分别属于所要构造的二分图的两个顶点集
例如在刚才的例子中抽出一条有向边e12举例说明:
复制顶点1和顶点2,使得1,2∈V1; 1’,2’∈V2 ,不难发现|V1|=|V2|
根据边e12和e21,得到无向二分图:
那么同理就可以得到刚才的例子的 无向二分图为:
再继而通过无向二分图,以V1的元素作为row,V2的元素作为col,构造 可达矩阵 存储到计算机
1’ 2’ 3’ 4’ 5’
1 F T F F F
2 T F T F F
3 F T F T T
4 F F T F F
5 F F T F F
接下来就是要求这个 无向二分图的最小路径覆盖 了
利用公式:
无向二分图的最小路径覆盖 = 顶点数 – 最大二分匹配数/2
顶点数:就是用于构造无向二分图的城市数,即进行“拆点”操作前的顶点数量
最大二分匹配书之所以要除以2,是因为进行了“拆点”擦奥做做使得匹配总数多了一倍,因此除以2得到原图的真正的匹配数
最后剩下的问题就是求最大二分匹配数了,用匈牙利算法,这就不多说了,参考POJ3041的做法,基本一摸一样。
从这道题得出了一个结论:
当二分图的两个顶点子集基数相等时,该二分图所有顶点的匹配数 等于 任意一个顶点子集匹配数的2倍
其实匈牙利算法解题是极为简单的,但是图论的难并不是难在解答,而是建图的过程,也难怪会有牛曰:用匈牙利算法,建图是痛苦的,最后是快乐的。
#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; const int maxn=440; int map[maxn][maxn]; char c[maxn][maxn]; bool vis[maxn]; int link[maxn],g[maxn][maxn]; int tx,ty; int next[4][2]={1,0,0,1,0,-1,-1,0}; bool find(int u){ for(int i=1;i<=ty;i++){ if(!vis[i]&&g[u][i]){ vis[i]=true; if(link[i]==-1||find(link[i])){ link[i]=u; return true; } } } return false; } int solve(){ int sum=0; memset(link,-1,sizeof(link)); for(int i=1;i<=tx;i++){ memset(vis,false,sizeof(vis)); if(find(i)) sum++; } return sum; } int main(){ int t; scanf("%d",&t); while(t--){ memset(g,0,sizeof(g)); memset(c,0,sizeof(c)); memset(map,0,sizeof(map)); int m,n; cin>>m>>n; int ans=0; for(int i=1;i<=m;i++){ for(int j=1;j<=n;j++){ cin>>c[i][j]; if(c[i][j]=='*'){ map[i][j]=++ans; } } } tx=ty=ans; //printf("%d %d\n",tx,ty); for(int i=1;i<=m;i++){ for(int j=1;j<=n;j++){ if(map[i][j]){ for(int k=0;k<4;k++){ int xx=i+next[k][0]; int yy=j+next[k][1]; if(xx<1||xx>m||yy<1||yy>n) continue; if(map[xx][yy]) g[map[i][j]][map[xx][yy]]=1; } } } } printf("%d\n",ans-solve()/2); } return 0; }