【数值方法,水题】UVa 10341 - Solve It

题目链接

题意:

解方程:p ∗ e^(−x) + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x^2 + u = 0 (0 <= x <= 1);

其中0 ≤ p, r ≤ 20 , −20 ≤ q, s, t ≤ 0。(一开始没看见q,s,t<=0, 卡了半天...)

 

根据上面的条件,设F(x) = p ∗ e^(−x) + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x^2 + u ;即求0 <= x <= 1时与x轴是否有交点。

可以看出F(x)在该区间内为减函数,判断有无解则只需判断F(0)>=0&&F(1)<=0即可。若有解,则在[0,1]范围内二分求解。

代码如下:

【数值方法,水题】UVa 10341 - Solve It
 1 #include<iostream>

 2 #include<cstdio>

 3 #include<cstdlib>

 4 #include<cmath>

 5 using namespace std;

 6 const double eps = 1e-14;

 7 double p, q, r, s, t, u;

 8 double F(double x)

 9 {

10     return p*exp(-x)+q*sin(x)+r*cos(x)+s*tan(x)+t*x*x+u;

11 }

12 int main()

13 {

14 

15     while(scanf("%lf%lf%lf%lf%lf%lf", &p, &q, &r, &s, &t, &u) == 6)

16     {

17         double f0 = F(0), f1 = F(1);

18         if(f1 > eps || f0 < -eps) printf("No solution\n");

19         else

20         {

21             double L = 0, R = 1, M;

22             while(L < R)

23             {

24                 M = L+(R-L)/2;

25                 if(fabs(F(M)) < eps) break;

26                 if(F(M) < 0) R = M;

27                 else L = M;

28             }

29 

30             printf("%.4lf\n", M);

31         }

32     }

33     return 0;

34 }
View Code

 

你可能感兴趣的:(uva)