Mysql SQLyog导入导出csv文件
SQLyog 导出表中数据存为csv文件
1. 选择数据库表 --> 右击属性 --> 备份/导出 --> 导出表数据作为 --> 选择cvs --> 选择下面的“更改” --> 字段 --> 可变长度--> 字段终止与 -->输入逗号,(这是重点,否则导出的csv文件内容都在一列中,而不是分字段分列)
下面两个选项框取消。
2.导出csv文件后,使用UE编辑器或者记事本打开,另存为,选择编码为utf-8格式,保存。
3.打开csv文件,这样中文为正确的显示,如果不转码保存的话,为中文乱码。
SQLyog 将csv文件数据导入mysql表中
1. 将数据文件存为csv文件,保存的时候选择逗号(或\t)作为分隔符;
2. 选择数据库表 --> 导入 --> 导入本地可使用的CSV数据 --> 从文件导入,选择刚刚的csv文件,导入完成。
2. 选择cvs --> 选择下面的“更改” --> 字段 --> 可变长度--> 字段终止与 -->输入逗号,(这是重点,否则导入的csv文件内容都在一列中,而不是分字段分列)
下面两个选项框取消。
http://www.cnblogs.com/DswCnblog/p/5970873.html
在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据:
源数据如下表所示:
Table | Size | Desc | |
---|---|---|---|
ServiceLogs | 98,706,832 rows x 14 columns | 8.77 GB | 交易日志数据,每个交易会话可以有多条交易 |
ServiceCodes | 286 rows × 8 columns | 20 KB | 交易分类的字典表 |
启动IPython notebook,加载pylab环境:
1
|
ipython
notebook
--
pylab
=
inline
|
Pandas提供了IO工具可以将大文件分块读取,测试了一下性能,完整加载9800万条数据也只需要263秒左右,还是相当不错了。
1
2
3
4
5
6
|
import
pandas
as
pd
reader
=
pd
.
read_csv
(
'data/servicelogs'
,
iterator
=
True
)
try
:
df
=
reader
.
get_chunk
(
100000000
)
except
StopIteration
:
print
"Iteration is stopped."
|
1百万条 | 1千万条 | 1亿条 | |
---|---|---|---|
ServiceLogs | 1 s | 17 s | 263 s |
使用不同分块大小来读取再调用 pandas.concat 连接DataFrame,chunkSize设置在1000万条左右速度优化比较明显。
1
2
3
4
5
6
7
8
9
10
11
|
loop
=
True
chunkSize
=
100000
chunks
=
[
]
while
loop
:
try
:
chunk
=
reader
.
get_chunk
(
chunkSize
)
chunks
.
append
(
chunk
)
except
StopIteration
:
loop
=
False
print
"Iteration is stopped."
df
=
pd
.
concat
(
chunks
,
ignore_index
=
True
)
|
下面是统计数据,Read Time是数据读取时间,Total Time是读取和Pandas进行concat操作的时间,根据数据总量来看,对5~50个DataFrame对象进行合并,性能表现比较好。
Chunk Size | Read Time (s) | Total Time (s) | Performance |
---|---|---|---|
100,000 | 224.418173 | 261.358521 | |
200,000 | 232.076794 | 256.674154 | |
1,000,000 | 213.128481 | 234.934142 | √ √ |
2,000,000 | 208.410618 | 230.006299 | √ √ √ |
5,000,000 | 209.460829 | 230.939319 | √ √ √ |
10,000,000 | 207.082081 | 228.135672 | √ √ √ √ |
20,000,000 | 209.628596 | 230.775713 | √ √ √ |
50,000,000 | 222.910643 | 242.405967 | |
100,000,000 | 263.574246 | 263.574246 |
如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。
Pandas提供了 DataFrame.describe 方法查看数据摘要,包括数据查看(默认共输出首尾60行数据)和行列统计。由于源数据通常包含一些空值甚至空列,会影响数据分析的时间和效率,在预览了数据摘要后,需要对这些无效数据进行处理。
首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False作为结果进行填充,如下图所示:
Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。尝试了按列名依次计算获取非空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行。如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数:
1
|
df
.
dropna
(
axis
=
1
,
how
=
'all'
)
|
共移除了14列中的6列,时间也只消耗了85.9秒。
接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万 x 6列也只省下了200M的空间。进一步的数据清洗还是在移除无用数据和合并上。
对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说表中的流水号是某两个字段拼接、类型描述等,通过对这些数据的丢弃,新的数据文件大小为4.73GB,足足减少了4.04G!
使用 DataFrame.dtypes 可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。
1
|
df
[
'Name'
]
=
df
[
'Name'
]
.
astype
(
np
.
datetime64
)
|
对数据聚合,我测试了 DataFrame.groupby 和 DataFrame.pivot_table 以及 pandas.merge ,groupby 9800万行 x 3列的时间为99秒,连接表为26秒,生成透视表的速度更快,仅需5秒。
1
2
3
|
df
.
groupby
(
[
'NO'
,
'TIME'
,
'SVID'
]
)
.
count
(
)
# 分组
fullData
=
pd
.
merge
(
df
,
trancodeData
)
[
[
'NO'
,
'SVID'
,
'TIME'
,
'CLASS'
,
'TYPE'
]
]
# 连接
actions
=
fullData
.
pivot_table
(
'SVID'
,
columns
=
'TYPE'
,
aggfunc
=
'count'
)
# 透视表
|
根据透视表生成的交易/查询比例饼图:
将日志时间加入透视表并输出每天的交易/查询比例图:
1
2
|
total_actions
=
fullData
.
pivot_table
(
'SVID'
,
index
=
'TIME'
,
columns
=
'TYPE'
,
aggfunc
=
'count'
)
total_actions
.
plot
(
subplots
=
False
,
figsize
=
(
18
,
6
)
,
kind
=
'area'
)
|
除此之外,Pandas提供的DataFrame查询统计功能速度表现也非常优秀,7秒以内就可以查询生成所有类型为交易的数据子表:
1
|
tranData
=
fullData
[
fullData
[
'Type'
]
==
'Transaction'
]
|
该子表的大小为 [10250666 rows x 5 columns]。在此已经完成了数据处理的一些基本场景。实验结果足以说明,在非“>5TB”数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。