1.直接插入排序
经常碰到这样一类排序问题:把新的数据插入到已经排好的数据列中。
![Uploading Paste_Image_937999.png . . .]
如何写写成代码:
- 首先设定插入次数,即循环次数,for(int i=1;i
- 设定插入数和得到已经排好序列的最后一个数的位数。insertNum和j=i-1。
- 从最后一个数开始向前循环,如果插入数小于当前数,就将当前数向后移动一位。
- 将当前数放置到空着的位置,即j+1。
代码实现如下:
public void insertSort(int[] a){
int length=a.length;//数组长度,将这个提取出来是为了提高速度。
int insertNum;//要插入的数
for(int i=1;i//插入的次数
insertNum=a[i];//要插入的数
int j=i-1;//已经排序好的序列元素个数
while(j>=0&&a[j]>insertNum){//序列从后到前循环,将大于insertNum的数向后移动一格
a[j+1]=a[j];//元素移动一格
j--;
}
a[j+1]=insertNum;//将需要插入的数放在要插入的位置。
}
}
2.希尔排序
对于直接插入排序问题,数据量巨大时。
如何写成代码:
- 首先确定分的组数。
- 然后对组中元素进行插入排序。
- 然后将length/2,重复1,2步,直到length=0为止。
代码实现如下:
public void sheelSort(int[] a){
int d = a.length;
while (d!=0) {
d=d/2;
for (int x = 0; x < d; x++) {//分的组数
for (int i = x + d; i < a.length; i += d) {//组中的元素,从第二个数开始
int j = i - d;//j为有序序列最后一位的位数
int temp = a[i];//要插入的元素
for (; j >= 0 && temp < a[j]; j -= d) {//从后往前遍历。
a[j + d] = a[j];//向后移动d位
}
a[j + d] = temp;
}
}
}
}
3.简单选择排序
常用于取序列中最大最小的几个数时。
(如果每次比较都交换,那么就是交换排序;如果每次比较完一个循环再交换,就是简单选择排序。)
如何写成代码:
- 首先确定循环次数,并且记住当前数字和当前位置。
- 将当前位置后面所有的数与当前数字进行对比,小数赋值给key,并记住小数的位置。
- 比对完成后,将最小的值与第一个数的值交换。
- 重复2、3步。
代码实现如下:
public void selectSort(int[] a) {
int length = a.length;
for (int i = 0; i < length; i++) {//循环次数
int key = a[i];
int position=i;
for (int j = i + 1; j < length; j++) {//选出最小的值和位置
if (a[j] < key) {
key = a[j];
position = j;
}
}
a[position]=a[i];//交换位置
a[i]=key;
}
}
4.堆排序
对简单选择排序的优化。
代码实现如下:
public void heapSort(int[] a){
System.out.println("开始排序");
int arrayLength=a.length;
//循环建堆
for(int i=0;i1 ;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
private void swap(int[] data, int i, int j) {
// TODO Auto-generated method stub
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
//对data数组从0到lastIndex建大顶堆
private void buildMaxHeap(int[] data, int lastIndex) {
// TODO Auto-generated method stub
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex//若果右子节点的值较大
if(data[biggerIndex]1]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k]//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
5.冒泡排序
一般不用。
如何写成代码:
- 设置循环次数。
- 设置开始比较的位数,和结束的位数。
- 两两比较,将最小的放到前面去。
- 重复2、3步,直到循环次数完毕。
代码实现如下:
public void bubbleSort(int[] a){
int length=a.length;
int temp;
for(int i=0;ifor (int j=0;j1;j++){
if(a[j]>a[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
}
6.快速排序
要求时间最快时。
代码实现如下:
public static void quickSort(int[] numbers, int start, int end) {
if (start < end) {
int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)
int temp; // 记录临时中间值
int i = start, j = end;
do {
while ((numbers[i] < base) && (i < end))
i++;
while ((numbers[j] > base) && (j > start))
j--;
if (i <= j) {
temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
i++;
j--;
}
} while (i <= j);
if (start < j)
quickSort(numbers, start, j);
if (end > i)
quickSort(numbers, i, end);
}
}
7.归并排序
速度仅次于快排,内存少的时候使用,可以进行并行计算的时候使用。
代码实现如下:
public static void mergeSort(int[] numbers, int left, int right) {
int t = 1;// 每组元素个数
int size = right - left + 1;
while (t < size) {
int s = t;// 本次循环每组元素个数
t = 2 * s;
int i = left;
while (i + (t - 1) < size) {
merge(numbers, i, i + (s - 1), i + (t - 1));
i += t;
}
if (i + (s - 1) < right)
merge(numbers, i, i + (s - 1), right);
}
}
private static void merge(int[] data, int p, int q, int r) {
int[] B = new int[data.length];
int s = p;
int t = q + 1;
int k = p;
while (s <= q && t <= r) {
if (data[s] <= data[t]) {
B[k] = data[s];
s++;
} else {
B[k] = data[t];
t++;
}
k++;
}
if (s == q + 1)
B[k++] = data[t++];
else
B[k++] = data[s++];
for (int i = p; i <= r; i++)
data[i] = B[i];
}
8.基数排序
用于大量数,很长的数进行排序时。
代码实现如下:
public void sort(int[] array) {
//首先确定排序的趟数;
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
}
int time = 0;
//判断位数;
while (max > 0) {
max /= 10;
time++;
}
//建立10个队列;
List queue = new ArrayList();
for (int i = 0; i < 10; i++) {
ArrayList queue1 = new ArrayList();
queue.add(queue1);
}
//进行time次分配和收集;
for (int i = 0; i < time; i++) {
//分配数组元素;
for (int j = 0; j < array.length; j++) {
//得到数字的第time+1位数;
int x = array[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
ArrayList queue2 = queue.get(x);
queue2.add(array[j]);
queue.set(x, queue2);
}
int count = 0;//元素计数器;
//收集队列元素;
for (int k = 0; k < 10; k++) {
while (queue.get(k).size() > 0) {
ArrayList queue3 = queue.get(k);
array[count] = queue3.get(0);
queue3.remove(0);
count++;
}
}
}
}