OpenCV学习(34) 点到轮廓的距离

      在OpenCV中,可以很方便的计算一个像素点到轮廓的距离,计算距离的函数为:

double pointPolygonTest(InputArray contour, Point2f pt, bool measureDist)

Parameters:

  • contour – 输入参数轮廓。
  • pt – 测试的点。
  • measureDist – 如果为false的话,则函数计算符号,在轮廓外部在为-1,在轮廓内为1,在轮廓上,则为0。如果为ture,则计算实际的像素符号距离,在轮廓外的点像素距离为负值,在内的点,像素距离为正值。

 

下面的是计算一副图像中各个像素到轮廓距离的代码:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;

using namespace cv;
using namespace std;

int main( int argc, char** argv )
{
//创建一副图像
const int r = 100;
Mat src = Mat::zeros( Size( 4*r, 4*r ), CV_8UC1 );

//创建一个轮廓序列
vector<Point2f> vert(6);

vert[0] = Point( 1.5*r, 1.34*r );
vert[1] = Point( 1*r, 2*r );
vert[2] = Point( 1.5*r, 2.866*r );
vert[3] = Point( 2.5*r, 2.866*r );
vert[4] = Point( 3*r, 2*r );
vert[5] = Point( 2.5*r, 1.34*r );

//画轮廓
for( int j = 0; j < 6; j++ )
{ line( src, vert[j], vert[(j+1)%6], Scalar( 255 ), 3, 8 ); }

//得到轮廓
vector<vector<Point> > contours; vector<Vec4i> hierarchy;
Mat src_copy = src.clone();

findContours( src_copy, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);

//计算顶点到轮廓的距离
Mat raw_dist( src.size(), CV_32FC1 );

for( int j = 0; j < src.rows; j++ )
{
for( int i = 0; i < src.cols; i++ )
{
raw_dist.at<float>(j,i) = pointPolygonTest( contours[0], Point2f(i,j), true ); }
}

double minVal; double maxVal;
minMaxLoc( raw_dist, &minVal, &maxVal, 0, 0, Mat() );
minVal = abs(minVal); maxVal = abs(maxVal);

//用户型化的方式显示距离
Mat drawing = Mat::zeros( src.size(), CV_8UC3 );

for( int j = 0; j < src.rows; j++ )
{ for( int i = 0; i < src.cols; i++ )
{
//在外部
if( raw_dist.at<float>(j,i) < 0 )
{ drawing.at<Vec3b>(j,i)[0] = 255 - (int) abs(raw_dist.at<float>(j,i))*255/minVal; }
//在内部
else if( raw_dist.at<float>(j,i) > 0 )
{ drawing.at<Vec3b>(j,i)[2] = 255 - (int) raw_dist.at<float>(j,i)*255/maxVal; }
else
// 在边上
{ drawing.at<Vec3b>(j,i)[0] = 255; drawing.at<Vec3b>(j,i)[1] = 255; drawing.at<Vec3b>(j,i)[2] = 255; }
}
}

namedWindow( "image", CV_WINDOW_AUTOSIZE );
imshow( "image", src );
namedWindow( "Distance", CV_WINDOW_AUTOSIZE );
imshow( "Distance", drawing );

waitKey(0);
return(0);
}

对于轮廓外的点,越是蓝色,则距离轮廓越近,轮廓内的点,越是红色距离轮廓越近,轮廓上点距离为0,用白色表示。

程序执行后效果:

imageimage

 

程序代码:工程FirstOpenCV30

你可能感兴趣的:(opencv)