Pandas 10分钟入门(官方说明+个人小测试)

Pandas 10分钟入门


代码下载地址[http://download.csdn.net/download/sirwill/10043185]

In [19]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Object Creation

In [20]:
s= pd.Series([1,2,3,np.nan,5,6,])   #series 类型数组。
s
Out[20]:
0    1.0
1    2.0
2    3.0
3    NaN
4    5.0
5    6.0
dtype: float64
In [21]:
dates= pd.date_range("20170112",periods=6) #Creating a DataFrame by passing a numpy array, with a datetime index and labeled column
dates
Out[21]:
DatetimeIndex(['2017-01-12', '2017-01-13', '2017-01-14', '2017-01-15',
               '2017-01-16', '2017-01-17'],
              dtype='datetime64[ns]', freq='D')
In [22]:
list(dates)
dates.date
Out[22]:
array([datetime.date(2017, 1, 12), datetime.date(2017, 1, 13),
       datetime.date(2017, 1, 14), datetime.date(2017, 1, 15),
       datetime.date(2017, 1, 16), datetime.date(2017, 1, 17)], dtype=object)
In [23]:
list(dates.date)
Out[23]:
[datetime.date(2017, 1, 12),
 datetime.date(2017, 1, 13),
 datetime.date(2017, 1, 14),
 datetime.date(2017, 1, 15),
 datetime.date(2017, 1, 16),
 datetime.date(2017, 1, 17)]
In [24]:
dates.year
Out[24]:
Int64Index([2017, 2017, 2017, 2017, 2017, 2017], dtype='int64')
In [25]:
list(dates.year)
Out[25]:
[2017, 2017, 2017, 2017, 2017, 2017]
In [26]:
list(dates.day)
Out[26]:
[12, 13, 14, 15, 16, 17]
In [27]:
str(dates.date)
Out[27]:
'[datetime.date(2017, 1, 12) datetime.date(2017, 1, 13)\n datetime.date(2017, 1, 14) datetime.date(2017, 1, 15)\n datetime.date(2017, 1, 16) datetime.date(2017, 1, 17)]'
In [28]:
df=pd.DataFrame(np.random.randn(6,4),index=dates,columns=list("ABCD"))
df
Out[28]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [29]:
df2 = pd.DataFrame({ 'A' : 1.,
                    'B' : pd.Timestamp('20130102'),
                    'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
                    'D' : np.array([3] * 4,dtype='int32'),
                    'E' : pd.Categorical(["test","train","test","train"]),
                    'F' : 'foo' }) #Creating a DataFrame by passing a dict of objects that can be converted to series-like.
df2
Out[29]:
  A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
In [30]:
df2.dtypes
Out[30]:
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object
In [31]:
df.dtypes
Out[31]:
A    float64
B    float64
C    float64
D    float64
dtype: object
In [32]:
df2.<TAB> #使用jupyter时按tab键,可以看到代码提示。
  File "", line 1
    df2. #If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled.
        ^
SyntaxError: invalid syntax

Viewing Data

In [36]:
df.head()
Out[36]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
In [37]:
df.index
Out[37]:
DatetimeIndex(['2017-01-12', '2017-01-13', '2017-01-14', '2017-01-15',
               '2017-01-16', '2017-01-17'],
              dtype='datetime64[ns]', freq='D')
In [38]:
df.columns
Out[38]:
Index(['A', 'B', 'C', 'D'], dtype='object')
In [39]:
df.values
Out[39]:
array([[-2.2581213 ,  2.45619592,  0.77856734, -2.030407  ],
       [-0.65834822,  0.62249451,  0.38862467,  0.07358728],
       [ 0.58921899,  1.39279193,  0.60554535,  1.23153815],
       [-0.1519579 , -0.65524863, -2.1147252 , -0.66983949],
       [-1.32330447,  3.14365936,  0.63899562,  0.89868346],
       [-0.02493461,  0.3858107 , -1.57718486, -0.0214603 ]])
In [40]:
df.describe()
Out[40]:
  A B C D
count 6.000000 6.000000 6.000000 6.000000
mean -0.637908 1.224284 -0.213363 -0.086316
std 1.021078 1.401987 1.282079 1.171045
min -2.258121 -0.655249 -2.114725 -2.030407
25% -1.157065 0.444982 -1.085732 -0.507745
50% -0.405153 1.007643 0.497085 0.026063
75% -0.056690 2.190345 0.630633 0.692409
max 0.589219 3.143659 0.778567 1.231538
In [41]:
df
Out[41]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [42]:
df.T
Out[42]:
  2017-01-12 00:00:00 2017-01-13 00:00:00 2017-01-14 00:00:00 2017-01-15 00:00:00 2017-01-16 00:00:00 2017-01-17 00:00:00
A -2.258121 -0.658348 0.589219 -0.151958 -1.323304 -0.024935
B 2.456196 0.622495 1.392792 -0.655249 3.143659 0.385811
C 0.778567 0.388625 0.605545 -2.114725 0.638996 -1.577185
D -2.030407 0.073587 1.231538 -0.669839 0.898683 -0.021460
In [43]:
df.sort_index(axis=1,ascending=False) #Sorting by an axis  排序。
Out[43]:
  D C B A
2017-01-12 -2.030407 0.778567 2.456196 -2.258121
2017-01-13 0.073587 0.388625 0.622495 -0.658348
2017-01-14 1.231538 0.605545 1.392792 0.589219
2017-01-15 -0.669839 -2.114725 -0.655249 -0.151958
2017-01-16 0.898683 0.638996 3.143659 -1.323304
2017-01-17 -0.021460 -1.577185 0.385811 -0.024935
In [44]:
df.sort_values(by="B") #Sorting by values
Out[44]:
  A B C D
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-16 -1.323304 3.143659 0.638996 0.898683
In [45]:
df
Out[45]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460

Selection

Getting

In [46]:
df["A"]# Selecting a single column, which yields a Series, equivalent to df.A
Out[46]:
2017-01-12   -2.258121
2017-01-13   -0.658348
2017-01-14    0.589219
2017-01-15   -0.151958
2017-01-16   -1.323304
2017-01-17   -0.024935
Freq: D, Name: A, dtype: float64
In [47]:
df.A
Out[47]:
2017-01-12   -2.258121
2017-01-13   -0.658348
2017-01-14    0.589219
2017-01-15   -0.151958
2017-01-16   -1.323304
2017-01-17   -0.024935
Freq: D, Name: A, dtype: float64
In [48]:
df[0:3]  #Selecting via [], which slices the rows.
Out[48]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
In [49]:
df["2017-01-13":"2017-01-17"]
Out[49]:
  A B C D
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460

Selection by Label

In [50]:
dates
Out[50]:
DatetimeIndex(['2017-01-12', '2017-01-13', '2017-01-14', '2017-01-15',
               '2017-01-16', '2017-01-17'],
              dtype='datetime64[ns]', freq='D')
In [51]:
df.loc[dates[0]] #For getting a cross section using a label
Out[51]:
A   -2.258121
B    2.456196
C    0.778567
D   -2.030407
Name: 2017-01-12 00:00:00, dtype: float64
In [52]:
df.loc[:,["A","B"]]
Out[52]:
  A B
2017-01-12 -2.258121 2.456196
2017-01-13 -0.658348 0.622495
2017-01-14 0.589219 1.392792
2017-01-15 -0.151958 -0.655249
2017-01-16 -1.323304 3.143659
2017-01-17 -0.024935 0.385811
In [53]:
df.loc['20170112':'20170116',['A','B']] #Showing label slicing, both endpoints are included
Out[53]:
  A B
2017-01-12 -2.258121 2.456196
2017-01-13 -0.658348 0.622495
2017-01-14 0.589219 1.392792
2017-01-15 -0.151958 -0.655249
2017-01-16 -1.323304 3.143659
In [54]:
df.loc["20170115",["A","B"]] 
Out[54]:
A   -0.151958
B   -0.655249
Name: 2017-01-15 00:00:00, dtype: float64
In [55]:
df.loc[dates[3],"D"] #For getting a scalar value
Out[55]:
-0.6698394854437093
In [56]:
df.at[dates[3],"D"] #For getting fast access to a scalar (equiv to the prior method)
Out[56]:
-0.6698394854437093

Selection by Position

In [57]:
df.iloc[3] #Select via the position of the passed integers
Out[57]:
A   -0.151958
B   -0.655249
C   -2.114725
D   -0.669839
Name: 2017-01-15 00:00:00, dtype: float64
In [58]:
df.iloc[2:5,0:2] # By integer slices, acting similar to numpy/python
Out[58]:
  A B
2017-01-14 0.589219 1.392792
2017-01-15 -0.151958 -0.655249
2017-01-16 -1.323304 3.143659
In [59]:
df.iloc[[1,3,4],[0,2]] #By lists of integer position locations, similar to the numpy/python style
Out[59]:
  A C
2017-01-13 -0.658348 0.388625
2017-01-15 -0.151958 -2.114725
2017-01-16 -1.323304 0.638996
In [60]:
df.iloc[1:3,:]
Out[60]:
  A B C D
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
In [61]:
df.iloc[:,1:3]
Out[61]:
  B C
2017-01-12 2.456196 0.778567
2017-01-13 0.622495 0.388625
2017-01-14 1.392792 0.605545
2017-01-15 -0.655249 -2.114725
2017-01-16 3.143659 0.638996
2017-01-17 0.385811 -1.577185
In [62]:
df.iloc[1,1] #For getting a value explicitly
Out[62]:
0.62249451281708756
In [63]:
df.iat[1,1] #For getting fast access to a scalar (equiv to the prior method)
Out[63]:
0.62249451281708756

Boolean Indexing

In [64]:
df[df.A>0] #Using a single column’s values to select data
Out[64]:
  A B C D
2017-01-14 0.589219 1.392792 0.605545 1.231538
In [65]:
df[df>0] #Selecting values from a DataFrame where a boolean condition is met
Out[65]:
  A B C D
2017-01-12 NaN 2.456196 0.778567 NaN
2017-01-13 NaN 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 NaN NaN NaN NaN
2017-01-16 NaN 3.143659 0.638996 0.898683
2017-01-17 NaN 0.385811 NaN NaN
In [66]:
df2
Out[66]:
  A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
In [67]:
df
Out[67]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [68]:
df2=df.copy()
df2
Out[68]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [69]:
df.equals(df2)
Out[69]:
True
In [70]:
df==df2
Out[70]:
  A B C D
2017-01-12 True True True True
2017-01-13 True True True True
2017-01-14 True True True True
2017-01-15 True True True True
2017-01-16 True True True True
2017-01-17 True True True True
In [71]:
df is df2
Out[71]:
False
In [72]:
df2["E"]=["one","one","two","three","four","three"]
df2
Out[72]:
  A B C D E
2017-01-12 -2.258121 2.456196 0.778567 -2.030407 one
2017-01-13 -0.658348 0.622495 0.388625 0.073587 one
2017-01-14 0.589219 1.392792 0.605545 1.231538 two
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839 three
2017-01-16 -1.323304 3.143659 0.638996 0.898683 four
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460 three
In [73]:
df2[df2.E.isin(["two","four"])]
Out[73]:
  A B C D E
2017-01-14 0.589219 1.392792 0.605545 1.231538 two
2017-01-16 -1.323304 3.143659 0.638996 0.898683 four
In [74]:
df2[df2["E"].isin(["two","four"])]
Out[74]:
  A B C D E
2017-01-14 0.589219 1.392792 0.605545 1.231538 two
2017-01-16 -1.323304 3.143659 0.638996 0.898683 four

Setting

In [75]:
s1= pd.Series([1,2,3,4,5,6],index=pd.date_range("20171016",periods=6)) #Setting a new column automatically aligns the data by the indexes
s1
Out[75]:
2017-10-16    1
2017-10-17    2
2017-10-18    3
2017-10-19    4
2017-10-20    5
2017-10-21    6
Freq: D, dtype: int64
In [76]:
df.at[dates[0],"A"]=0 #Setting values by label
In [77]:
df
Out[77]:
  A B C D
2017-01-12 0.000000 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [78]:
df.iat[0,1]=0
df
Out[78]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [79]:
df.loc[:,"D"]=np.array([5]*len(df)) #Setting by assigning with a numpy array
df
Out[79]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [80]:
df2=df.copy()
df2
Out[80]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [81]:
df2[df2>0]=-df2
df2
Out[81]:
  A B C D
2017-01-12 0.000000 0.000000 -0.778567 -5
2017-01-13 -0.658348 -0.622495 -0.388625 -5
2017-01-14 -0.589219 -1.392792 -0.605545 -5
2017-01-15 -0.151958 -0.655249 -2.114725 -5
2017-01-16 -1.323304 -3.143659 -0.638996 -5
2017-01-17 -0.024935 -0.385811 -1.577185 -5

Missing Data

In [83]:
df
Out[83]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [84]:
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1
df1
Out[84]:
  A B C D E
2017-01-12 0.000000 0.000000 0.778567 5 1.0
2017-01-13 -0.658348 0.622495 0.388625 5 1.0
2017-01-14 0.589219 1.392792 0.605545 5 NaN
2017-01-15 -0.151958 -0.655249 -2.114725 5 NaN
In [85]:
df1.dropna(how="any") #To drop any rows that have missing data
Out[85]:
  A B C D E
2017-01-12 0.000000 0.000000 0.778567 5 1.0
2017-01-13 -0.658348 0.622495 0.388625 5 1.0
In [86]:
df1.fillna(value=5)  # Filling missing data
Out[86]:
  A B C D E
2017-01-12 0.000000 0.000000 0.778567 5 1.0
2017-01-13 -0.658348 0.622495 0.388625 5 1.0
2017-01-14 0.589219 1.392792 0.605545 5 5.0
2017-01-15 -0.151958 -0.655249 -2.114725 5 5.0
In [87]:
df1
Out[87]:
  A B C D E
2017-01-12 0.000000 0.000000 0.778567 5 1.0
2017-01-13 -0.658348 0.622495 0.388625 5 1.0
2017-01-14 0.589219 1.392792 0.605545 5 NaN
2017-01-15 -0.151958 -0.655249 -2.114725 5 NaN
In [88]:
pd.isnull(df1)
Out[88]:
  A B C D E
2017-01-12 False False False False False
2017-01-13 False False False False False
2017-01-14 False False False False True
2017-01-15 False False False False True
In [89]:
df1.isnull()
Out[89]:
  A B C D E
2017-01-12 False False False False False
2017-01-13 False False False False False
2017-01-14 False False False False True
2017-01-15 False False False False True
In [90]:
df1.isna()  #没有这个方法~~
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
 in ()
----> 1 df1.isna()  #没有这个方法~~

D:\Users\asus\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
   2968             if name in self._info_axis:
   2969                 return self[name]
-> 2970             return object.__getattribute__(self, name)
   2971 
   2972     def __setattr__(self, name, value):

AttributeError: 'DataFrame' object has no attribute 'isna'

Options

Stats

Operations in general exclude missing data. Performing a descriptive statistic

In [91]:
df
Out[91]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [92]:
df.mean()
Out[92]:
A   -0.261554
B    0.814918
C   -0.213363
D    5.000000
dtype: float64
In [93]:
df.mean(1)  #Same operation on the other axis
Out[93]:
2017-01-12    1.444642
2017-01-13    1.338193
2017-01-14    1.896889
2017-01-15    0.519517
2017-01-16    1.864838
2017-01-17    0.945923
Freq: D, dtype: float64
In [94]:
s= pd.Series([1,2,3,np.nan,4,5],index=dates).shift(2) 
# Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.
s
Out[94]:
2017-01-12    NaN
2017-01-13    NaN
2017-01-14    1.0
2017-01-15    2.0
2017-01-16    3.0
2017-01-17    NaN
Freq: D, dtype: float64
In [95]:
df
Out[95]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [96]:
df.sub(s,axis="index")  #dataFrame与series的减法
Out[96]:
  A B C D
2017-01-12 NaN NaN NaN NaN
2017-01-13 NaN NaN NaN NaN
2017-01-14 -0.410781 0.392792 -0.394455 4.0
2017-01-15 -2.151958 -2.655249 -4.114725 3.0
2017-01-16 -4.323304 0.143659 -2.361004 2.0
2017-01-17 NaN NaN NaN NaN

Apply

In [97]:
df
Out[97]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [98]:
df.apply(np.cumsum)  #行叠加。
Out[98]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 1.167192 10
2017-01-14 -0.069129 2.015286 1.772737 15
2017-01-15 -0.221087 1.360038 -0.341988 20
2017-01-16 -1.544392 4.503697 0.297008 25
2017-01-17 -1.569326 4.889508 -1.280177 30
In [99]:
df.apply(lambda x: x.max()-x.min())
Out[99]:
A    1.912523
B    3.798908
C    2.893293
D    0.000000
dtype: float64

Histogramming

In [100]:
s= pd.Series(np.random.randint(0,7,size=10))
s
Out[100]:
0    4
1    5
2    2
3    0
4    5
5    3
6    4
7    3
8    3
9    0
dtype: int32
In [101]:
s.value_counts()
Out[101]:
3    3
5    2
4    2
0    2
2    1
dtype: int64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [102]:
s= pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
Out[102]:
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object
In [103]:
s
Out[103]:
0       A
1       B
2       C
3    Aaba
4    Baca
5     NaN
6    CABA
7     dog
8     cat
dtype: object

Merge 合并

Concat

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations. See the Merging section Concatenating pandas objects together with concat():

In [104]:
df
Out[104]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [105]:
df=pd.DataFrame(np.random.randn(10,4))
df
Out[105]:
  0 1 2 3
0 0.111766 -0.505125 2.156029 0.419152
1 1.068870 1.180587 0.361345 1.090554
2 0.488997 0.281507 -0.738345 -0.242974
3 -1.846709 1.686173 -0.202319 -1.151983
4 0.573012 -1.979189 1.544768 1.594595
5 -0.954571 -0.696788 0.270959 -2.296720
6 -1.511946 1.796113 0.399493 0.412664
7 0.089844 -0.545153 -0.315653 -0.235828
8 -0.747140 1.222900 -1.650812 0.292432
9 0.659855 0.501265 0.363978 1.722914
In [106]:
# break it into pieces
pieces=[df[:3],df[3:7],df[7:]]
pd.concat(pieces)
Out[106]:
  0 1 2 3
0 0.111766 -0.505125 2.156029 0.419152
1 1.068870 1.180587 0.361345 1.090554
2 0.488997 0.281507 -0.738345 -0.242974
3 -1.846709 1.686173 -0.202319 -1.151983
4 0.573012 -1.979189 1.544768 1.594595
5 -0.954571 -0.696788 0.270959 -2.296720
6 -1.511946 1.796113 0.399493 0.412664
7 0.089844 -0.545153 -0.315653 -0.235828
8 -0.747140 1.222900 -1.650812 0.292432
9 0.659855 0.501265 0.363978 1.722914
In [107]:
pieces
Out[107]:
[          0         1         2         3
 0  0.111766 -0.505125  2.156029  0.419152
 1  1.068870  1.180587  0.361345  1.090554
 2  0.488997  0.281507 -0.738345 -0.242974,
           0         1         2         3
 3 -1.846709  1.686173 -0.202319 -1.151983
 4  0.573012 -1.979189  1.544768  1.594595
 5 -0.954571 -0.696788  0.270959 -2.296720
 6 -1.511946  1.796113  0.399493  0.412664,
           0         1         2         3
 7  0.089844 -0.545153 -0.315653 -0.235828
 8 -0.747140  1.222900 -1.650812  0.292432
 9  0.659855  0.501265  0.363978  1.722914]

Join

SQL style merges. See the Database style joining

In [108]:
left=pd.DataFrame({"key":["foo","foo"],"lval":[1,2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
In [109]:
left
Out[109]:
  key lval
0 foo 1
1 foo 2
In [110]:
right
Out[110]:
  key rval
0 foo 4
1 foo 5
In [111]:
pd.merge(left,right,on="key")
Out[111]:
  key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
In [112]:
left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
In [113]:
left
Out[113]:
  key lval
0 foo 1
1 bar 2
In [114]:
right
Out[114]:
  key rval
0 foo 4
1 bar 5
In [115]:
pd.merge(left,right,on="key")
Out[115]:
  key lval rval
0 foo 1 4
1 bar 2 5

Append

In [116]:
df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
df
Out[116]:
  A B C D
0 -0.852451 1.074357 -0.591892 0.950982
1 -0.977580 1.656374 0.693657 0.718832
2 0.303269 -0.881728 -1.509321 1.219849
3 0.655751 1.235660 1.729038 1.074948
4 0.658413 -1.215348 -1.139623 0.753772
5 1.345115 1.420212 -0.124543 -0.099265
6 1.129623 0.597484 -0.804759 -0.568266
7 -0.770570 0.540917 -0.261607 -0.083751
In [117]:
s=df.iloc[3]
s
Out[117]:
A    0.655751
B    1.235660
C    1.729038
D    1.074948
Name: 3, dtype: float64
In [118]:
df.append(s,ignore_index=True)
Out[118]:
  A B C D
0 -0.852451 1.074357 -0.591892 0.950982
1 -0.977580 1.656374 0.693657 0.718832
2 0.303269 -0.881728 -1.509321 1.219849
3 0.655751 1.235660 1.729038 1.074948
4 0.658413 -1.215348 -1.139623 0.753772
5 1.345115 1.420212 -0.124543 -0.099265
6 1.129623 0.597484 -0.804759 -0.568266
7 -0.770570 0.540917 -0.261607 -0.083751
8 0.655751 1.235660 1.729038 1.074948

Grouping

By “group by” we are referring to a process involving one or more of the following steps • Splitting the data into groups based on some criteria • Applying a function to each group independently • Combining the results into a data structure

In [119]:
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
                          'foo', 'bar', 'foo', 'foo'],
                   'B' : ['one', 'one', 'two', 'three',
                          'two', 'two', 'one', 'three'],
                   'C' : np.random.randn(8),
                   'D' : np.random.randn(8)})
df
Out[119]:
  A B C D
0 foo one -0.523738 -1.363519
1 bar one -0.071920 -2.618027
2 foo two -2.712421 -0.407372
3 bar three -0.635898 -1.942854
4 foo two 0.952073 -0.546110
5 bar two 1.474296 -0.982238
6 foo one -0.529788 -0.213397
7 foo three 0.877394 -0.791663
In [120]:
df.groupby("A").sum()
Out[120]:
  C D
A    
bar 0.766479 -5.543120
foo -1.936480 -3.322062
In [121]:
df.groupby(["A","B"]).sum()  #Grouping by multiple columns forms a hierarchical index, which we then apply the function.
Out[121]:
    C D
A B    
bar one -0.071920 -2.618027
three -0.635898 -1.942854
two 1.474296 -0.982238
foo one -1.053527 -1.576917
three 0.877394 -0.791663
two -1.760347 -0.953482

Reshaping

Stack

In [122]:
tuples = list(zip([['bar', 'bar', 'baz', 'baz',
                     'foo', 'foo', 'qux', 'qux'],
                    ['one', 'two', 'one', 'two',
                     'one', 'two', 'one', 'two']]))
tuples
Out[122]:
[(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],),
 (['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'],)]
In [123]:
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                     'foo', 'foo', 'qux', 'qux'],
                    ['one', 'two', 'one', 'two',
                     'one', 'two', 'one', 'two']]))
tuples
Out[123]:
[('bar', 'one'),
 ('bar', 'two'),
 ('baz', 'one'),
 ('baz', 'two'),
 ('foo', 'one'),
 ('foo', 'two'),
 ('qux', 'one'),
 ('qux', 'two')]
In [124]:
index=pd.MultiIndex.from_tuples(tuples,names=["first","second"])
index
Out[124]:
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
           names=['first', 'second'])
In [125]:
df=pd.DataFrame(np.random.randn(8,2),index=index,columns=['A', 'B'])
df
Out[125]:
    A B
first second    
bar one -1.101051 -1.126231
two -0.395652 -0.313567
baz one 1.378579 -1.637869
two 0.665960 -0.259749
foo one -0.256181 1.260131
two -0.994720 0.506272
qux one -0.422649 0.191402
two -0.102085 0.975210
In [126]:
df2=df[:4]
df2
Out[126]:
    A B
first second    
bar one -1.101051 -1.126231
two -0.395652 -0.313567
baz one 1.378579 -1.637869
two 0.665960 -0.259749
In [127]:
stacked= df2.stack()
stacked
Out[127]:
first  second   
bar    one     A   -1.101051
               B   -1.126231
       two     A   -0.395652
               B   -0.313567
baz    one     A    1.378579
               B   -1.637869
       two     A    0.665960
               B   -0.259749
dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is unstack(), which by default unstacks the last level:

In [128]:
stacked.unstack()
Out[128]:
    A B
first second    
bar one -1.101051 -1.126231
two -0.395652 -0.313567
baz one 1.378579 -1.637869
two 0.665960 -0.259749
In [129]:
stacked.unstack(1)
Out[129]:
  second one two
first      
bar A -1.101051 -0.395652
B -1.126231 -0.313567
baz A 1.378579 0.665960
B -1.637869 -0.259749
In [130]:
stacked.unstack(0)
Out[130]:
  first bar baz
second      
one A -1.101051 1.378579
B -1.126231 -1.637869
two A -0.395652 0.665960
B -0.313567 -0.259749

Pivot Tables

In [131]:
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
                   'B' : ['A', 'B', 'C'] * 4,
                   'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
                   'D' : np.random.randn(12),
                   'E' : np.random.randn(12)})
df
Out[131]:
  A B C D E
0 one A foo 0.039230 0.134261
1 one B foo 0.952890 -0.499183
2 two C foo -0.778814 -0.655735
3 three A bar 0.798864 0.025109
4 one B bar -0.580050 -1.711672
5 one C bar 0.004300 -0.433591
6 two A foo 0.229248 -2.648814
7 three B foo 0.506488 0.630373
8 one C foo -0.315667 0.031764
9 one A bar -1.547410 0.743825
10 two B bar -0.480958 0.365255
11 three C bar 1.742948 0.692884
In [4]:
pd.pivot_table(df,values="D",index=["A","B"],columns=["C"])
Out[4]:
  C bar foo
A B    
one A 0.932814 -1.440079
B 0.060252 1.071877
C 2.879779 0.355274
three A -0.328442 NaN
B NaN -2.544812
C -1.879058 NaN
two A NaN -1.987377
B 0.220517 NaN
C NaN -0.082820

Time Series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications.

In [132]:
rng=pd.date_range("1/2/2017",periods=100,freq="S")
rng
Out[132]:
DatetimeIndex(['2017-01-02 00:00:00', '2017-01-02 00:00:01',
               '2017-01-02 00:00:02', '2017-01-02 00:00:03',
               '2017-01-02 00:00:04', '2017-01-02 00:00:05',
               '2017-01-02 00:00:06', '2017-01-02 00:00:07',
               '2017-01-02 00:00:08', '2017-01-02 00:00:09',
               '2017-01-02 00:00:10', '2017-01-02 00:00:11',
               '2017-01-02 00:00:12', '2017-01-02 00:00:13',
               '2017-01-02 00:00:14', '2017-01-02 00:00:15',
               '2017-01-02 00:00:16', '2017-01-02 00:00:17',
               '2017-01-02 00:00:18', '2017-01-02 00:00:19',
               '2017-01-02 00:00:20', '2017-01-02 00:00:21',
               '2017-01-02 00:00:22', '2017-01-02 00:00:23',
               '2017-01-02 00:00:24', '2017-01-02 00:00:25',
               '2017-01-02 00:00:26', '2017-01-02 00:00:27',
               '2017-01-02 00:00:28', '2017-01-02 00:00:29',
               '2017-01-02 00:00:30', '2017-01-02 00:00:31',
               '2017-01-02 00:00:32', '2017-01-02 00:00:33',
               '2017-01-02 00:00:34', '2017-01-02 00:00:35',
               '2017-01-02 00:00:36', '2017-01-02 00:00:37',
               '2017-01-02 00:00:38', '2017-01-02 00:00:39',
               '2017-01-02 00:00:40', '2017-01-02 00:00:41',
               '2017-01-02 00:00:42', '2017-01-02 00:00:43',
               '2017-01-02 00:00:44', '2017-01-02 00:00:45',
               '2017-01-02 00:00:46', '2017-01-02 00:00:47',
               '2017-01-02 00:00:48', '2017-01-02 00:00:49',
               '2017-01-02 00:00:50', '2017-01-02 00:00:51',
               '2017-01-02 00:00:52', '2017-01-02 00:00:53',
               '2017-01-02 00:00:54', '2017-01-02 00:00:55',
               '2017-01-02 00:00:56', '2017-01-02 00:00:57',
               '2017-01-02 00:00:58', '2017-01-02 00:00:59',
               '2017-01-02 00:01:00', '2017-01-02 00:01:01',
               '2017-01-02 00:01:02', '2017-01-02 00:01:03',
               '2017-01-02 00:01:04', '2017-01-02 00:01:05',
               '2017-01-02 00:01:06', '2017-01-02 00:01:07',
               '2017-01-02 00:01:08', '2017-01-02 00:01:09',
               '2017-01-02 00:01:10', '2017-01-02 00:01:11',
               '2017-01-02 00:01:12', '2017-01-02 00:01:13',
               '2017-01-02 00:01:14', '2017-01-02 00:01:15',
               '2017-01-02 00:01:16', '2017-01-02 00:01:17',
               '2017-01-02 00:01:18', '2017-01-02 00:01:19',
               '2017-01-02 00:01:20', '2017-01-02 00:01:21',
               '2017-01-02 00:01:22', '2017-01-02 00:01:23',
               '2017-01-02 00:01:24', '2017-01-02 00:01:25',
               '2017-01-02 00:01:26', '2017-01-02 00:01:27',
               '2017-01-02 00:01:28', '2017-01-02 00:01:29',
               '2017-01-02 00:01:30', '2017-01-02 00:01:31',
               '2017-01-02 00:01:32', '2017-01-02 00:01:33',
               '2017-01-02 00:01:34', '2017-01-02 00:01:35',
               '2017-01-02 00:01:36', '2017-01-02 00:01:37',
               '2017-01-02 00:01:38', '2017-01-02 00:01:39'],
              dtype='datetime64[ns]', freq='S')
In [133]:
ts =pd.Series(np.random.randint(0,500,len(rng)),index=rng)
ts
Out[133]:
2017-01-02 00:00:00    251
2017-01-02 00:00:01     63
2017-01-02 00:00:02    108
2017-01-02 00:00:03    288
2017-01-02 00:00:04    491
2017-01-02 00:00:05    490
2017-01-02 00:00:06    343
2017-01-02 00:00:07    357
2017-01-02 00:00:08     72
2017-01-02 00:00:09    171
2017-01-02 00:00:10    324
2017-01-02 00:00:11    281
2017-01-02 00:00:12    176
2017-01-02 00:00:13     14
2017-01-02 00:00:14    495
2017-01-02 00:00:15    150
2017-01-02 00:00:16     69
2017-01-02 00:00:17    144
2017-01-02 00:00:18    126
2017-01-02 00:00:19    368
2017-01-02 00:00:20    129
2017-01-02 00:00:21    386
2017-01-02 00:00:22    228
2017-01-02 00:00:23    458
2017-01-02 00:00:24     98
2017-01-02 00:00:25    244
2017-01-02 00:00:26    206
2017-01-02 00:00:27     98
2017-01-02 00:00:28     92
2017-01-02 00:00:29    259
                      ... 
2017-01-02 00:01:10    127
2017-01-02 00:01:11    342
2017-01-02 00:01:12    185
2017-01-02 00:01:13    123
2017-01-02 00:01:14     73
2017-01-02 00:01:15    132
2017-01-02 00:01:16    462
2017-01-02 00:01:17    317
2017-01-02 00:01:18    180
2017-01-02 00:01:19    247
2017-01-02 00:01:20     97
2017-01-02 00:01:21    401
2017-01-02 00:01:22    342
2017-01-02 00:01:23    382
2017-01-02 00:01:24    304
2017-01-02 00:01:25     47
2017-01-02 00:01:26    193
2017-01-02 00:01:27    334
2017-01-02 00:01:28    196
2017-01-02 00:01:29    297
2017-01-02 00:01:30    195
2017-01-02 00:01:31    236
2017-01-02 00:01:32    200
2017-01-02 00:01:33    490
2017-01-02 00:01:34    196
2017-01-02 00:01:35    201
2017-01-02 00:01:36    397
2017-01-02 00:01:37    494
2017-01-02 00:01:38    482
2017-01-02 00:01:39    267
Freq: S, Length: 100, dtype: int32
In [7]:
ts.resample("5Min").sum()
Out[7]:
2017-01-02    22939
Freq: 5T, dtype: int32
In [9]:
ts.resample("1Min").sum()
Out[9]:
2017-01-02 00:00:00    13896
2017-01-02 00:01:00     9043
Freq: T, dtype: int32

Time zone representation.零时区 UTC表示。

In [10]:
rng= pd.date_range("2/1/2017 00:00",periods=5,freq="D")
rng
Out[10]:
DatetimeIndex(['2017-02-01', '2017-02-02', '2017-02-03', '2017-02-04',
               '2017-02-05'],
              dtype='datetime64[ns]', freq='D')
In [12]:
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts
Out[12]:
2017-02-01    0.329594
2017-02-02    2.097319
2017-02-03    1.852023
2017-02-04   -0.213452
2017-02-05    0.160873
Freq: D, dtype: float64
In [13]:
tsUtc=ts.tz_localize("UTC")
tsUtc
Out[13]:
2017-02-01 00:00:00+00:00    0.329594
2017-02-02 00:00:00+00:00    2.097319
2017-02-03 00:00:00+00:00    1.852023
2017-02-04 00:00:00+00:00   -0.213452
2017-02-05 00:00:00+00:00    0.160873
Freq: D, dtype: float64

Convert to another time zone.时区转换。

In [14]:
tsUtc.tz_convert("US/Eastern")
Out[14]:
2017-01-31 19:00:00-05:00    0.329594
2017-02-01 19:00:00-05:00    2.097319
2017-02-02 19:00:00-05:00    1.852023
2017-02-03 19:00:00-05:00   -0.213452
2017-02-04 19:00:00-05:00    0.160873
Freq: D, dtype: float64
In [15]:
tsUtc
Out[15]:
2017-02-01 00:00:00+00:00    0.329594
2017-02-02 00:00:00+00:00    2.097319
2017-02-03 00:00:00+00:00    1.852023
2017-02-04 00:00:00+00:00   -0.213452
2017-02-05 00:00:00+00:00    0.160873
Freq: D, dtype: float64

Converting between time span representations

In [16]:
rng=pd.date_range("1/8/2017",periods=5,freq="M")
rng
Out[16]:
DatetimeIndex(['2017-01-31', '2017-02-28', '2017-03-31', '2017-04-30',
               '2017-05-31'],
              dtype='datetime64[ns]', freq='M')
In [18]:
ts=pd.Series(np.random.randn(len(rng)),rng)
ts
Out[18]:
2017-01-31    0.904523
2017-02-28   -0.470144
2017-03-31   -0.373244
2017-04-30    0.860448
2017-05-31    0.176226
Freq: M, dtype: float64
In [20]:
ps=ts.to_period()
ps
Out[20]:
2017-01    0.904523
2017-02   -0.470144
2017-03   -0.373244
2017-04    0.860448
2017-05    0.176226
Freq: M, dtype: float64
In [21]:
ps.to_timestamp()
Out[21]:
2017-01-01    0.904523
2017-02-01   -0.470144
2017-03-01   -0.373244
2017-04-01    0.860448
2017-05-01    0.176226
Freq: MS, dtype: float64
In [22]:
ps
Out[22]:
2017-01    0.904523
2017-02   -0.470144
2017-03   -0.373244
2017-04    0.860448
2017-05    0.176226
Freq: M, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

In [23]:
prng=pd.period_range("1990Q1","2017Q4",freq="Q-NOV")
prng
Out[23]:
PeriodIndex(['1990Q1', '1990Q2', '1990Q3', '1990Q4', '1991Q1', '1991Q2',
             '1991Q3', '1991Q4', '1992Q1', '1992Q2',
             ...
             '2015Q3', '2015Q4', '2016Q1', '2016Q2', '2016Q3', '2016Q4',
             '2017Q1', '2017Q2', '2017Q3', '2017Q4'],
            dtype='period[Q-NOV]', length=112, freq='Q-NOV')
In [25]:
ts= pd.Series(np.random.randn(len(prng)),prng)
ts.head()
Out[25]:
1990Q1    1.193031
1990Q2    0.621627
1990Q3   -0.235553
1990Q4    0.642938
1991Q1    0.247024
Freq: Q-NOV, dtype: float64
In [26]:
ts.index=(prng.asfreq("M","e")+1).asfreq("H","s")+9
ts.head()
Out[26]:
1990-03-01 09:00    1.193031
1990-06-01 09:00    0.621627
1990-09-01 09:00   -0.235553
1990-12-01 09:00    0.642938
1991-03-01 09:00    0.247024
Freq: H, dtype: float64

Categoricals

In [34]:
df = pd.DataFrame({"id":[1,2,3,4,5,6],"raw_grade":["a","a","c","b","b","f"]})
df
Out[34]:
  id raw_grade
0 1 a
1 2 a
2 3 c
3 4 b
4 5 b
5 6 f

Convert the raw grades to a categorical data type.

In [35]:
df["grade"]=df.raw_grade.astype("category")
df
Out[35]:
  id raw_grade grade
0 1 a a
1 2 a a
2 3 c c
3 4 b b
4 5 b b
5 6 f f
In [36]:
df.grade #Convert the raw grades to a categorical data type
Out[36]:
0    a
1    a
2    c
3    b
4    b
5    f
Name: grade, dtype: category
Categories (4, object): [a, b, c, f]
In [37]:
# Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace!)

df.grade.cat.categories=["very good","good","nomal","bad"]
df
Out[37]:
  id raw_grade grade
0 1 a very good
1 2 a very good
2 3 c nomal
3 4 b good
4 5 b good
5 6 f bad
In [38]:
# Reorder the categories and simultaneously add the missing categories (methods under Series .cat return a new Series per default).

df.grade=df.grade.cat.set_categories(["very bad", "bad", "medium","good", "very good"])
df.grade
Out[38]:
0    very good
1    very good
2          NaN
3         good
4         good
5          bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
In [39]:
df
Out[39]:
  id raw_grade grade
0 1 a very good
1 2 a very good
2 3 c NaN
3 4 b good
4 5 b good
5 6 f bad

Sorting is per order in the categories, not lexical order

In [40]:
df.sort_values(by="grade")
Out[40]:
  id raw_grade grade
2 3 c NaN
5 6 f bad
3 4 b good
4 5 b good
0 1 a very good
1 2 a very good

Grouping by a categorical column shows also empty categories

In [41]:
df.groupby("grade").size()
Out[41]:
grade
very bad     0
bad          1
medium       0
good         2
very good    2
dtype: int64

Plotting

In [43]:
ts=pd.Series(np.random.randn(1000),index=pd.date_range("1/1/2017",periods=1000))
ts.head()
Out[43]:
2017-01-01   -0.745067
2017-01-02   -0.070895
2017-01-03    0.233542
2017-01-04   -0.206597
2017-01-05    0.891064
Freq: D, dtype: float64
In [45]:
ts=ts.cumsum()
ts.head()
Out[45]:
2017-01-01   -0.745067
2017-01-02   -1.561029
2017-01-03   -2.143449
2017-01-04   -2.932466
2017-01-05   -2.830418
Freq: D, dtype: float64
In [48]:
ts.plot()
Out[48]:
In [50]:
df=pd.DataFrame(np.random.randn(1000,4),index=ts.index,columns=["A","B","C","D"])
df.head()
Out[50]:
  A B C D
2017-01-01 -1.940139 -0.476590 -0.154066 1.692812
2017-01-02 0.399891 0.268976 0.596209 -0.484979
2017-01-03 0.814519 -0.142193 -0.084394 -0.687342
2017-01-04 0.385848 -1.230059 -0.093327 -0.096652
2017-01-05 0.407435 -0.849347 0.379192 0.172933
In [51]:
df=df.cumsum()
In [53]:
plt.figure()
df.plot()
plt.legend(loc="best")
plt.show()

Getting Data In/Out

CSV

In [ ]:
df.to_csv("foo.csv")
In [ ]:
pd.read_csv("foo.csv")

HDF5

In [ ]:
df.to_hdf("foo.h5","df")
In [ ]:
pd.read_hdf("foo.h5","df")

Excel

In [ ]:
df.to_excel('foo.xlsx', sheet_name='Sheet1')
In [ ]:
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 

你可能感兴趣的:(python,pandas)