(1) 在树莓派中安装opencv库
(作业提供的参考)
1.扩展文件系统
$ sudo raspi-config
raspi-config ”菜单中选择“ Advanced Options ”项。
2.安装依赖项
先换源
更新软件源,更新软件 (换源)
sudo apt-get update && sudo apt-get upgrade
Cmake等开发者工具
sudo apt-get install build-essential cmake pkg-config
图片I/O包
sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
视频I/O包
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt-get install libxvidcore-dev libx264-dev
OpenCV用于显示图片的子模块需要GTK
sudo apt-get install libgtk2.0-dev libgtk-3-dev
性能优化包
sudo apt-get install libatlas-base-dev gfortran
安装 Python2.7 & Python3
sudo apt-get install python2.7-dev python3-dev
遇到的问题:
无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系
解决: 尝试了网上的各种办法以后无果,最终重新烧录系统,
需要注意的是,烧录成功以后,先换源,并且安装aptitude(自动解决依赖关系) sudo apt-get install aptitude
,防止出现一样的错误。
接着开始安装依赖项,很不幸,又是一样的错误(无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系)
解决办法:将命令中apt-get 换成aptitude,逐一安装。
这个时候又遇到了新问题(太惨了):sudo apt-get install libgtk2.0-dev libgtk-3-dev 安装这项依赖的时候 显示未满足的依赖关系 用aptitude依然解决不了
解决办法 : 我们经过很长时间的研究,尝试了网上无数种办法没有成功。最后发现我们的清华源单词拼错字了。。。。。 重新换源
终于成功啦!
3.下载OpenCV源代码
$ CD〜
$ wget -O opencv.zip https://github.com/Itseez/opencv/archive/3.3.0.zip
$解压缩opencv.zip
原先安装的最新版本,但是出现无法解压的情况,于是重新找了网站,下载了3.3.0版本,成功解压。
4.Python 2.7或Python 3
-
在Raspberry Pi上安装OpenCV 3 + Python
$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py
$ sudo python3 get-pip.py
-
安装虚拟环境
sudo pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple virtualenv virtualenvwrapper
- 配置~/.profile
打开配置文件:
sudo nano ~/.profile
开始配置:
export WORKON_HOME=$HOME/.virtualenvs
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/bin/virtualenv
source /usr/local/bin/virtualenvwrapper.sh
export VIRTUALENVWRAPPER_ENV_BIN_DIR=bin
- 创建虚拟机
mkvirtualenv cv -p python3
- 进入虚拟机 (每次进入之前都刷新一次配置文件)
workon cv
- 安装numpy
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy
(5)编译OpenCV
cd ~/opencv-3.3.0/
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-3.3.0/modules \
-D BUILD_EXAMPLES=ON ..
-
打开swapfile文件 ,编辑为CONF_SWAPSIZE=1024,已调整交换空间大小
sudo nano /etc/dphys-swapfile
-
重启配置文件的服务
sudo /etc/init.d/dphys-swapfile stop
sudo /etc/init.d/dphys-swapfile start
-
编译
make -j4
1.编译遇到的问题: 编译卡住
解决办法,我们参考了一篇很好的博客,最终得以解决。
解决步骤:
打开cap_ffmpeg_impl.hpp文件
nano ~/opencv-3.3.0/modules/Videoio/sRc/cap_ffmpeg_impl.hpp
在顶部添加下列内容
#define AV_CODEC_FLAG_GLOBAL_HEADER (1 << 22)
#define CODEC_FLAG_GLOBAL_HEADER AV_CODEC_FLAG_GLOBAL_HEADER
#define AVFMT_RAWPICTURE 0x0020
重新编译以后,编译成功了!
编译过程中,如果遇到问题 ,可参考博客
- 在Pi上安装OpenCV
sudo make install
sudo ldconfig
(2) 使用opencv和python控制树莓派的摄像头
- picamare模块安装
开启虚拟机
$ source ~/.profile
$ workon cv
安装picamare
$ pip install "picamera[array]"
- 在Python代码中导入OpenCV控制摄像头
test_image.py:(只有拍照功能)
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
import cv2
camera = PiCamera()
rawCapture = PiRGBArray(camera)
time.sleep(5) # 感光时间需要长一些
camera.capture(rawCapture, format="bgr")
image = rawCapture.array
cv2.imshow("Image", image)
cv2.waitKey(0)
vedio.py:(摄像功能)
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
import cv2
camera = PiCamera()
camera.resolution = (640, 480)
camera.framerate = 32
rawCapture = PiRGBArray(camera, size=(640, 480))
time.sleep(0.1)
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
image = frame.array
cv2.imshow("Frame", image)
key = cv2.waitKey(1) & 0xFF
rawCapture.truncate(0)
if key == ord("q"):
break
(3) 利用树莓派的摄像头实现人脸识别
-
安装模块(dlib,face_recognition)
pip install dlib -vvv
face_recognition模块安装参考 -
准备好需要用到的图片(用与和识别的脸作比较)和代码文件
facerec_on_raspberry_pi.py代码:
# This is a demo of running face recognition on a Raspberry Pi.
# This program will print out the names of anyone it recognizes to the console.
# To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
# the picamera[array] module installed.
# You can follow this installation instructions to get your RPi set up:
# https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
import face_recognition
import picamera
import numpy as np
# Get a reference to the Raspberry Pi camera.
# If this fails, make sure you have a camera connected to the RPi and that you
# enabled your camera in raspi-config and rebooted first.
camera = picamera.PiCamera()
camera.resolution = (320, 240)
output = np.empty((240, 320, 3), dtype=np.uint8)
# Load a sample picture and learn how to recognize it.
print("Loading known face image(s)")
obama_image = face_recognition.load_image_file("obama_small.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Initialize some variables
face_locations = []
face_encodings = []
while True:
print("Capturing image.")
# Grab a single frame of video from the RPi camera as a numpy array
camera.capture(output, format="rgb")
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(output)
print("Found {} faces in image.".format(len(face_locations)))
face_encodings = face_recognition.face_encodings(output, face_locations)
# Loop over each face found in the frame to see if it's someone we know.
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
name = ""
if match[0]:
name = "Barack Obama"
print("I see someone named {}!".format(name))
facerec_from_webcam_faster.py代码:
import face_recognition
import cv2
import numpy as np
# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
- 运行文件
python3 facerec_on_raspberry_pi.py
python3 facerec_from_webcam_faster.py
(4) 结合微服务的进阶任务
- 安装docker
sudo apt-get install curl
(先安装curl)
sudo curl -sSL https://get.docker.com | sh
- 执行安装脚本(使用阿里云镜像)
sh get-docker.sh --mirror Aliyun
- 查看docker版本,验证是否安装成功
docker --version
-
拉取镜像
`sudo docker pull sixsq/opencv-python
下载速度能把人等哭 于是镜像加速
参考下图,进行加速(速度直接飞起)
-
创建并运行容器
sudo docker run -it sixsq/opencv-python /bin/bash
-
进入容器并安装所需依赖
docker run -it [imageid] /bin/bash
pip install "picamera[array]" dlib face_recognition
-
commit镜像
docker commit [containerid] my-opencv
- 编写dockerfile文件构建镜像 dockerfile文件
FROM face_opencv
RUN mkdir /test
WORKDIR /test
COPY test .
-
生成镜像
docker build -t my-opencv-test .
-
运行容器
docker run -it --device=/dev/vchiq --device=/dev/video0 myopencv myopencv
-
运行代码
python3 facerec_on_raspberry_pi.py
选做:在opencv的docker容器中跑通步骤(3)的示例代码facerec_from_webcam_faster.py
- 在Windows系统中安装XMing
- 启动putty
- 查看DISPLAY环境变量值printenv
- 编辑启动脚本 run.sh
xhost + #允许来自任何主机的连接
docker run -it \
--rm \
-v ${PWD}/workdir:/myapp \
--net=host \
-v $HOME/.Xauthority:/root/.Xauthority \
-e DISPLAY=:10.0 \ #此处填写上面查看到的变量值
-e QT_X11_NO_MITSHM=1 \
--device=/dev/vchiq \
--device=/dev/video0 \
--name my-running-py \
my-opencv-test \
recognition.py
- 效果
(5) 以小组为单位,发表一篇博客,记录遇到的问题和解决方法,提供小组成员名单、分工、各自贡献以及在线协作的图片
1.遇到的问题以及解决办法,在上面都有提到。
2.小组成员名单及分工(第十七小组)
吕瑞峰(组长) | 031702533 | 负责实操,截图 |
---|---|---|
古力亚尔 | 031702511 | 负责攥写博客,寻找解决办法 |
严喜 | 031702514 | 负责寻找安装包,寻找问题解决办法 |