这是ElasticSearch 2.4 版本系列的第三篇:
ElasticSearch是文档型数据库,索引(Index)定义了文档的逻辑存储和字段类型,每个索引可以包含多个文档类型,文档类型是文档的集合,文档以索引定义的逻辑存储模型,比如,指定分片和副本的数量,配置刷新频率,分配分析器等,存储在索引中的海量文档分布式存储在ElasticSearch集群中。
ElasticSearch是基于Lucene框架的全文搜索引擎,将所有文档的信息写入到倒排索引(Inverted Index)的数据结构中,倒排索引建立的是索引中词和文档之间的映射关系,在倒排索引中,数据是面向词(Term)而不是面向文档的。
ElasticSearch的对象模型,跟关系型数据库模型相比:
索引是由段(Segment)组成的,段存储在硬盘(Disk)文件中,段不是实时更新的,这意味着,段在写入磁盘后,就不再被更新。ElasticSearch引擎把被删除的文档的信息存储在一个单独的文件中,在搜索数据时,ElasticSearch引擎首先从段中查询,再从查询结果中过滤被删除的文档,这意味着,段中存储着“被删除”的文档,这使得段中含有”正常文档“的密度降低。多个段可以通过段合并(Segment Merge)操作把“已删除”的文档将从段中物理删除,把未删除的文档合并到一个新段中,新段中没有”已删除文档“,因此,段合并操作能够提高索引的查找速度,但段合并是IO密集型的操作,需要消耗大量的硬盘IO。
一,创建索引
在创建索引之前,首先了解RESTful API的调用风格,在管理和使用ElasticSearch服务时,常用的HTTP动词有下面五个:
1,禁用自动创建索引
推荐设置:在全局配置文件 elasticsearch.yml 中,禁用自动创建索引:
action.auto_create_index:false
2,手动创建索引
创建索引的语法是:PUT http://host:port/index_name/ + index_configuration
其中,index_name是创建的索引的名字,indiex_configuration 是向ElasticSearch服务器传递的请求负载的主体,数据格式是json,用于定义索引的配置信息:映射节(mappings)和配置节(settings)。
在创建索引时,需要精心设计索引的映射节(mappings)和配置节(settings),本例创建blog索引和articles文档类型,创建索引的语法是:
PUT http://localhost:9200/blog/
下文详细介绍ElasticSearch索引的映射(Mapping)配置,详细信息请参考《Elasticsearch Reference [2.4] » Mapping》。注意,ElasticSearch引擎是大小写敏感的,强制性要求索引名和文档类型小写,对于字段名,ElasticSearch引擎会将首字母小写,建议在配置索引,文档类型和字段名时,都使用小写字母。
二,索引映射节(mappings)
1,索引结构
索引是由文档类型构成的,在mappings字段中定义索引的文档类型,示例代码中为blog索引定义了三个文档类型:articles,followers和comments
{ "mappings":{ "articles":{ }, "followers":{ }, "comments":{ } } }
2,文档属性
文档属性定义了文档类型的共用属性,适用于文档的所有字段:
{
"mappings":{
"articles":{ "dynamic":false,
"dynamic_date_formats":["yyyy-MM-dd hh:mm:ss", "yyyy-MM-dd" ],
"properties":{
"id":{},
"title":{},
"author":{},
"content":{},
"postedat":{}
}
}
}
}
三,文档的字段属性
1,字段的数据类型
字段的数据类型由字段的属性type指定,ElasticSearch支持的基础数据类型主要有:
在文档类型的properties属性中,定义字段的type属性,指定字段的数据类型,属性properties 用于定义文档类型的字段属性,或字段对象的属性:
"properties":{ "id":{"type":"long"},
2,字段的公共属性
3,字符串类型常用的其他属性
分析器(analyzer)把analyzed string 字段的值,转换成标记流(Token stream),例如,字符串"The quick Brown Foxes",可能被分解成的标记(Token)是:quick,brown,fox。这些词(term)是该字段的索引值,这使用对索引文本的查找更有效率。字段的属性 analyzer 用于指定在index-time和search-time时,ElasticSearch引擎分解字段值的分析器名称。
4,数值类型的其他属性
5,日期类型的其他属性
6,多字段(fields)
在fields属性中定义一个或多个字段,该字段的值和当前字段值相同,可以设置一个字段用于搜索,一个字段用于排序等。
"properties": { "id":{ "type":"long", "fields":{ "id2":{"type":"long","index":"not_analyzed"} } },
7,文档值(doc_values)
默认情况下,多数字段都被一起编入索引,用户使用倒排索引(Inverted Index)可以搜索到相应的词(Term),倒排索引支持在唯一的有序词列表中查找特定词,或检查文档中是否包含某个词,但是,对于排序(Sort),聚合和在脚本中访问特定字段的值(Field value),这三个操作需要执行不同的数据访问模式,即单字段数据访问:在文档中查找特定的字段,检查该字段是否包含指定的词。
文档值(doc_values)属性指定将字段的值写入到硬盘上的列式结构,实现了单个字段的数据访问模式,能够高效执行排序和聚合搜索。使用文档值的字段将有专属的字段数据缓存实例,无需像普通字段一样倒排。是存储在硬盘上的数据结构,在文档索引时创建。文档值数据存在硬盘上,在文档索引时创建,存储的数据和字段存储在_source 字段的数据相同,文档值支持所有的字段类型,除了analyzed string 字段之外。
默认情况下,所有的字段都支持文档值,默认是启用的(enabled),如果不需要在单个字段上执行排序或聚合操作,或者从脚本中访问指定字段的值,那么,可以禁用文档值,字段的值将不会存储在硬盘空间中。
"properties": { "status_code": { "type": "string", "index": "not_analyzed" "doc_values": true }, "session_id": { "type": "string", "index": "not_analyzed", "doc_values": false } }
8,字段数据(Fielddata)
字段数据(Fielddata)是存储在内存中的查询时数据结构,只支持analyzed string字段。该数据结构在字段第一次执行聚合,排序或被脚本访问时创建。创建的过程是:在读取整个倒排索引(Inverted Index)时,ElasticSearch从硬盘上加载倒排索引的每个段(Segment),倒转词(Term)和文档的关系,并将其存储在JVM堆内存中。加载字段数据的过程是非常消耗IO资源的,一旦被加载,就被存储在内存中,直到段的生命周期结束。
对于analyzed string字段,fielddata字段是默认启用的,
"text":{ "type":"string", "fielddata":{ "loading":"lazy" } }
详细信息,请参考Mapping parameters » fielddata
Analyzed strings use a query-time data structure called fielddata. This data structure is built on demand the first time that a field is used for aggregations, sorting, or is accessed in a script. It is built by reading the entire inverted index for each segment from disk, inverting the term ↔︎ document relationship, and storing the result in memory, in the JVM heap.
9,存储(store)
存储(store)属性指定是否将字段的原始值写入索引,默认值是no,字段值被分析,能够被搜索,但是,字段的原始值不会存储,这意味着,该字段能够被查询,但是无法获取字段的原始值。默认情况下,该字段的值会被存储到_source字段中,如果想要获取单个或多个字段的值,而不是整个_source字段,可以使用 source filtering 来实现;但是在特定的条件下,只存储一个字段的值是有意义的(make sense),例如,一个article文档包含:title,postdate和content字段,从文档中只获取title和postdate字段,并且使_source 字段包含content字段,必须通过store属性来控制:
"mappings": { "my_type": { "properties": { "title": { "type": "string", "store": true }, "date": { "type": "date", "store": true }, "content": { "type": "string",
"store": false } } } }
10,位置增加间隔(position_increment_gap)
对于analyzed string字段,都会考虑把词的位置信息,用于支持位置和短语匹配查询(proximity or phrase queries),例如,有一个字符串字段,该字段中存在多个词“fake”,ElasticSearch引擎会在每个值之间增加一个gap,以防止短语匹配或位置匹配查询出现跨越多个词的异常,这个gap的值就是属性position_increment_gap,默认值是100;
四,元字段
在索引的映射中,元字段(Meta-field)是以下划线开头的字段,部分元字段可以配置,部分元字段不可配置,只能用于返回信息。
1,_all 字段,可以配置
ElasticSearch使用_all字段存储其他字段的数据以便搜索,默认情况下,_all字段是启用的,包含了索引中所有字段的数据,然而这一字段使索引变大,如果不需要,请禁用该字段,或排除某些字段。为了在_all字段中不包括某个特定字段,在字段中设置“include_in_all”属性为false。
禁用_all字段,需要修改映射配置:
{ "articles":{ "_all":{ "enabled":false } } }
2,_source 字段,可以配置
_source字段表示在生成索引的过程中,存储发送到ElasticSearch的原始JSON文档,默认情况下,该字段会被启用,因为索引的局部更新功能依赖该字段。
{ "articles":{ "_source":{ "enabled":true } } } { "articles":{ "_source":{ "excludes":["Content","Comments"], "includes":["author"] } } }
3,_routing 字段,可以配置
路由字段,将一个文档值进行哈希映射,并将该文档路由到指定的分片,路由的公式是:
shard_num = hash(_routing) % num_primary_shards
在ElasticSearch 2.4 版本中,path参数被废弃,使用的默认字段是_id,设置required为true,表示路由字段在进行索引的CRUD操作时必需显式赋值。
{ "articles":{ "_routing":{ "required":true } } }
在put 命令中,使用自定义的路由字段,以下示例使用 user1字段作为路由字段更新和查询文档:
PUT my_index/my_type/1?routing=user1 { "title": "This is a document" } GET my_index/my_type/1?routing=user1
4,不可配置的元字段
详细信息,请参考:Mapping » Meta-Fields
五,索引配置节(settings)
1,配置索引的分片和副本数量
ElasticSearch索引是有一个或多个分片组成的,每个分片是索引的一个水平分区,包含了文档数据的一部分;每个分片有0,1或多个副本,分片的副本和分片存储相同的数据。
示例代码,为索引创建5个分片,分片没有副本:
"settings":{ "number_of_shards":5, "number_of_replicas":0,
2,配置分析器(analyzer)
在配置结点的analysis属性中配置分析器,参考官方文档了解更多,
分词器(tokenizer)是系统预定义的,常用的分词器是:
过滤器是系统预定义的,常用的过滤器是:
在配置结点中,自定义分析器(analyzer)示例代码:
{ "settings":{ "index":{ "analysis":{ "analyzer":{ "myanalyzer_name":{ "tokenizer":"standard", "filter":[ "asciifolding", "lowercase", "ourEnglishFilter" ] } }, "filter":{ "ourEnglishFilter":{ "type":"kstem" } } } } } }
六,删除索引
删除索引的语法是: DELETE http://localhost:9200/blog
七,更新索引
索引的更新分为逐个文档的更新和批量文档更新:
1,单个文档(Individual Document)的更新
单个文档更新的语法是:POST http://localhost:9200/blog/articles/1 +文档对象的JSON数据
POST http://localhost:9200/blog/articles/1
文档对象的JSON数据示例如下:
{ "id":1, "title":"Elasticsearch index", "Author":"悦光阴", "content":"xxxxxxxxxxx", "postedat":"2017-03-14" }
2,批量文档的更新(Bluk)
批量文档更新的语法是:POST http://localhost:9200/_bulk + 批量文档对象的JSON数据,在_bulk 端进行批量更新操作。
在传递的请求主体中,每一个请求分为两个JSON数据,第一个JSON数据包含操作说明的描述信息,第二个JSON数据包含文档对象:
{ "index":{ "_index":"blog", "_type":"ariticles", "_id":1 } } { "id":1, "title":"Elasticsearch index", "Author":"悦光阴", "content":"xxxxxxxxxxx", "postedat":"2017-03-14" } { "index":{ "_index":"blog", "_type":"ariticles", "_id":2 } } { "id":2, "title":"Elasticsearch index", "Author":"悦光阴", "content":"xxxxxxxxxxx", "postedat":"2017-03-14" }
八,搜索索引
在_search端对索引数据进行搜索,ES查询的语法非常复杂,总体来说,ElasticSearch支持聚合查询和简单查询。
1,按照路由搜索
路由可以控制文档和查询转发的目的分片,ElasticSearch计算路由字段的哈希值,对于相同的路由值,将产生相同的哈希值,分配到特定的分片上;如果在查询时,指定路由值,那么只需要搜索单个分片而不是整个索引,就能获取查询结果。
路由字段由文档类型的_routing属性定义,在查询时,使用routing参数来查找特定路由的文档:
GET http://localhost:9200/blog/_search?routing=1235&q=article_id=100
2,聚合和简单查询
请阅读《ElasticSearch查询 第一篇:搜索API》
附:索引的配置文档
{ "settings":{ "number_of_shards":5, "number_of_replicas":0 }, "mappings":{ "articles":{ "_routing":{ "required":false }, "_all":{ "enabled":false }, "_source":{ "enabled":true }, "dynamic_date_formats":[ "yyyy-MM-dd", "yyyyMMdd" ], "dynamic":"false", "properties":{ "articleid":{ "type":"long", "store":true, "index":"not_analyzed", "doc_values":true, "ignore_malformed":true, "include_in_all":true, "null_value":0, "precision_step":16 }, "title":{ "type":"string", "store":true, "index":"analyzed", "doc_values":false, "ignore_above":0, "include_in_all":true, "index_options":"positions", "position_increment_gap":100, "fields":{ "title":{ "type":"string", "store":true, "index":"not_analyzed", "doc_values":true, "ignore_above":0, "include_in_all":false, "index_options":"docs", "position_increment_gap":100 } } }, "author":{ "type":"string", "store":true, "index":"analyzed", "doc_values":false, "ignore_above":0, "include_in_all":true, "index_options":"positions", "position_increment_gap":100, "fields":{ "author":{ "type":"string", "index":"not_analyzed", "include_in_all":false, "doc_values":true } } }, "content":{ "type":"string", "store":true, "index":"analyzed", "doc_values":false, "ignore_above":0, "include_in_all":false, "index_options":"positions", "position_increment_gap":100 }, "postat":{ "type":"date", "store":true, "doc_values":true, "format":[ "yyyy-MM-dd", "yyyyMMdd" ], "index":"not_analyzed", "ignore_malformed":true, "include_in_all":true, "null_value":"2000-01-01", "precision_step":16 } } } } }
在head插件中,打开"Any Request"窗体,输入索引名称:blog;在操作列表中选择PUT,并将配置文档作为请求body,点击下方的“Request”按钮,向Elasticsearch引擎发起请求,当右边面板中出现"acknowledged":true 时,说明索引blog创建成功。
在测试阶段,可以禁用路由(_routing)和_all字段,启用源(_source)字段,以便更好的观察索引的行为。
当启用dynamic属性时,推荐所有字段的名称都使用小写,
参考文档:
Elasticsearch Reference [2.4] » Mapping » Mapping parameters
Elasticsearch Reference [2.4] » Index Modules
Elasticsearch Reference [2.4] » Mapping
本文转自悦光阴博客园博客,原文链接:http://www.cnblogs.com/ljhdo/p/4981928.html,如需转载请自行联系原作者