tensorflow 2.0 (一)数据加载

1.对于一些小型常用的数据集,TensorFlow有相关的API可以调用——keras.datasets

其中有以下经典数据集
1.boston housing         波士顿房价
2.mnist/fasion mnist     手写数字集/时髦品集
3.cifar10/100                物象分类
4.imdb

2.使用 tf.data.Dataset 的好处:

1.既能让后面有迭代的方式,又能直接对数据(tensor类型)进行预处理,还能支持batch和多线程的方式处理
2.提供了 .shuffle(打散), .map(预处理) 功能

现在我们假设 db 是个32*32的RGB三通道图片,即 [32,32,3]

.shuffle :用于打乱数据集但不影响映射关系

db = tf.data.Dataset.from_tensor_slices( (x_test, y_test) )
db = db.shuffle(10000)    # x_test,y_test映射关系不变

.map :     用于使用预处理映射

def preprocess(x,y):   
	# 定义一个与处理函数 用于将numpy数据类型转化为Tensor的类型(dtype=float32)
	x = tf.cast(x, dtype=tf.float32) / 255    # 将灰度级归一化
	y = tf.cast(y, dtype=tf.float32)
	y = tf.one_hot(y, depth=10)       		  # 对数字编码 y 进行one_hot编码,10个0-1序列中只有一个1
	return x, y

db2 = db.map(preprocess)

res = next(iter(db2))   # iter(db2):取得db2的迭代器,next(iter(db2)):迭代

.batch :批处理

db3 = db2.batch(32)   # (32张图片,32个label)为一个batch

res = next(iter(db3))  # 进行迭代

res[0].shape, res[1].shape   # 分别是一个batch中图片格式与label格式的shape
(TensorShape([32,32,32,3]), TensorShape([32,1,10]))   
# 图片格式是(32张,32*32大小,3个通道)  # (32张图片对应的label,1个label——通常会squeeze掉,10个one_hot深度)

.repeat : 整个数据集的循环次数

db4 = db3.repeat()   # 这样就是一直repeat迭代,死循环
db4 = db3.repeat(2)  # 这个是迭代2次

For Eaxmple:

def prepare_mnist_features_and_labels(x,y):
    x = tf.cast(x, tf.float32) / 255.0
    y = tf.cast(y, tf.float64)
    return x,y

def mnist_dataset():
    (x, y),(x_val, y_val) = datasets.fashion_mnist.load_data()  # 1.加载图像数据和通用数据(val指的是validation,测试数据集)
    y = tf.one_hot(y, depth=10)                                 # 2.数据  one_hot编码
    y_val = tf.one_hot(y_val, depth=10)                         #   label one_hot编码

    ds = tf.data.Dataset.from_tensor_slices((x, y))             # 3.转换为Dataset类型
    ds = ds.map(prepare_mnist_features_and_labels)              # 4.预处理函数映射
    ds = ds.shuffle(60000).batch(100)                           # 5.其他处理——如本处的前60000个打乱,100个为一个批次
    ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
    ds_val = ds_val.map(prepare_mnist_features_and_labels)
    ds_val = ds_val.shuffle(10000).batch(100)
    return ds, ds_val

3.现在我们来看看实战

import  tensorflow as tf
from    tensorflow.python import keras   # 在pycharm中keras在tensorflow.python下
from    tensorflow.keras import datasets
import  os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# x: [60k, 28, 28],   x_test: [10k, 28, 28]
# y: [60k],           y_test: [10k]
(x, y), (x_test, y_test) = datasets.mnist.load_data()
# x: [0~255] => [0~1.]
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32)

x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255.
y_test = tf.convert_to_tensor(y_test, dtype=tf.int32)

print(x.shape, y.shape, x.dtype, y.dtype)
print(tf.reduce_min(x), tf.reduce_max(x))
print(tf.reduce_min(y), tf.reduce_max(y))


train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
print('batch:', sample[0].shape, sample[1].shape)


# [b, 784] => [b, 256] => [b, 128] => [b, 10]
# [dim_in, dim_out], [dim_out]
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))

lr = 1e-3

for epoch in range(10): # iterate db for 10
    for step, (x, y) in enumerate(train_db): # for every batch
        # x:[128, 28, 28]
        # y: [128]

        # [b, 28, 28] => [b, 28*28]
        x = tf.reshape(x, [-1, 28*28])

        with tf.GradientTape() as tape: # tf.Variable
            # x: [b, 28*28]
            # h1 = x@w1 + b1
            # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]
            h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])
            h1 = tf.nn.relu(h1)
            # [b, 256] => [b, 128]
            h2 = h1@w2 + b2
            h2 = tf.nn.relu(h2)
            # [b, 128] => [b, 10]
            out = h2@w3 + b3

            # compute loss
            # out: [b, 10]
            # y: [b] => [b, 10]
            y_onehot = tf.one_hot(y, depth=10)

            # mse = mean(sum(y-out)^2)
            # [b, 10]
            loss = tf.square(y_onehot - out)
            # mean: scalar
            loss = tf.reduce_mean(loss)

        # compute gradients
        grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
        # print(grads)
        # w1 = w1 - lr * w1_grad
        w1.assign_sub(lr * grads[0])   # assign_sub 相当于 -=  原地更新
        b1.assign_sub(lr * grads[1])
        w2.assign_sub(lr * grads[2])
        b2.assign_sub(lr * grads[3])
        w3.assign_sub(lr * grads[4])
        b3.assign_sub(lr * grads[5])


        if step % 100 == 0:
            print(epoch, step, 'loss:', float(loss))

    # test/evluation
    # [w1, b1, w2, b2, w3, b3]
    total_correct, total_num = 0, 0
    for step, (x,y) in enumerate(test_db):

        # [b, 28, 28] => [b, 28*28]
        x = tf.reshape(x, [-1, 28*28])

        # [b, 784] => [b, 256] => [b, 128] => [b, 10]
        h1 = tf.nn.relu(x@w1 + b1)
        h2 = tf.nn.relu(h1@w2 + b2)
        out = h2@w3 + b3

        # out : [b, 10] ~ R
        # prob: [b, 10] ~ [0, 1]
        prob = tf.nn.softmax(out, axis=1)    # 在第一维度归一化
        # [b, 10] => [b]
        pred = tf.argmax(prob, axis=1)       # 在第一维度选择索引号
        pred = tf.cast(pred, dtype=tf.int32)
        # y: [b]
        # b: int32
        # print(pred.dtype, y.dtype)
        correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
        coorect = tf.reduce_sum(correct)
        # 原句是 totoal_correct += int(correct),但会报错,好像说不能转化为标量,所以我只能取第一维数据了(correct[0])
        # 即(TypeError: only size-1 arrays can be converted to Python scalars)
        total_correct += int(correct[0])       # 正确了的个数 total_correct
        total_num += x.shape[0]             # 总的标签数

    acc = total_correct / total_num
    print("test acc:", acc)

输出结果有点长,你可以自己修改在你的编译器上运行出结果,再查看

你可能感兴趣的:(TensorFlow2.0)