资源|Python在CV、NLP、ML和DM等六大方面的资源汇总

  全球人工智能

文章来源:GitHub

  计算机视觉

  • SimpleCV:开源计算机视觉框架,可以访问如OpenCV等高性能计算机视觉库使用Python编写,可以在Mac、Windows以及Ubuntu上运行。(http://simplecv.org/

  自然语言处理

  • NLTK:一个领先的平台,用来编写处理人类语言数据的Python程序。(http://www.nltk.org/

  • Pattern:Python可用的web挖掘模块,包括自然语言处理、机器学习等工具。(http://www.clips.ua.ac.be/pattern

  • TextBlob:为普通自然语言处理任务提供一致的API,以NLTK和Pattern为基础,并和两者都能很好兼容。(http://textblob.readthedocs.io/en/dev/

  • jieba:中文断词工具。(https://github.com/fxsjy/jieba#jieba-1

  • SnowNLP:中文文本处理库。(https://github.com/isnowfy/snownlp

  • loso:另一个中文断词库。(https://github.com/fangpenlin/loso

  • genius:基于条件随机域的中文断词库。(https://github.com/duanhongyi/genius

  • nut:自然语言理解工具包。(https://github.com/pprett/nut

  通用机器学习

  • Bayesian Methods for Hackers:Python语言概率规划的电子书。(https://github.com/CamDavidsonPilon/%E3%80%82Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

  • MLlib in Apache Spark:Spark下的分布式机器学习库。(http://spark.apache.org/docs/latest/mllib-guide.html

  • scikit-learn:基于SciPy的机器学习模块。(http://scikit-learn.github.io/stable

  • graphlab-create:包含多种机器学习模块的库(回归、聚类、推荐系统、图分析等),基于可以磁盘存储DataFramehttp://graphlab.com/products/create/docs/

  • BigML:连接外部服务器的库。(https://bigml.com/

  • pattern:Python的web挖掘模块。(https://github.com/clips/pattern

  • NuPIC:Numenta公司的智能计算平台。(https://github.com/numenta/nupic

  • Pylearn2:基于Theano的机器学习库。(https://github.com/lisa-lab/pylearn2

  • hebel:Python编写的使用GPU加速的深度学习库。(https://github.com/hannes-brt/hebel

  • gensim:主题建模工具。(https://github.com/RaRe-Technologies/gensim

  • PyBrain:另一个机器学习库。(https://github.com/pybrain/pybrain

  • Crab:可扩展的、快速推荐引擎。(https://github.com/muricoca/crab

  • python-recsys:Python实现的推荐系统。(https://github.com/ocelma/python-recsys

  • thinking bayes:关于贝叶斯分析的书籍。(https://github.com/AllenDowney/ThinkBayes

  • Restricted Boltzmann Machines:Python实现的受限波尔兹曼机。(https://github.com/echen/restricted-boltzmann-machines

  • Bolt:在线学习工具箱。(https://github.com/pprett/bolt

  • CoverTree:cover tree的Python实现,scipy.spatial.kdtree便捷的替代。(https://github.com/patvarilly/CoverTree

  • nilearn:Python实现的神经影像学机器学习库。(https://github.com/nilearn/nilearn

  • Shogun:机器学习工具箱。(https://github.com/shogun-toolbox/shogun

  • Pyevolve:遗传算法框架。(https://github.com/perone/Pyevolve

  • Caffe:考虑了代码清洁、可读性及速度的深度学习框架。(http://caffe.berkeleyvision.org/

  • breze:深度及递归神经网络的程序库,基于Theano。(https://github.com/breze-no-salt/breze

  数据分析/数据可视化

  • SciPy:基于Python的数学、科学、工程开源软件生态系统。(https://www.scipy.org/

  • NumPy:Python科学计算基础包。(http://www.numpy.org/

  • Numba:Python的低级虚拟机JIT编译器,Cython and NumPy的开发者编写,供科学计算使用。(http://numba.pydata.org/

  • NetworkX:为复杂网络使用的高效软件。(https://networkx.github.io/

  • Pandas:这个库提供了高性能、易用的数据结构及数据分析工具。(http://pandas.pydata.org/

  • Open Mining:Python中的商业智能工具(Pandas web接口)。(https://github.com/mining/mining

  • PyMC:MCMC采样工具包。(https://github.com/pymc-devs/pymc

  • zipline:Python的算法交易库。(https://github.com/quantopian/zipline

  • PyDy:全名Python Dynamics,协助基于NumPy、SciPy、IPython以及 matplotlib的动态建模工作流。(http://www.pydy.org/

  • SymPy:符号数学Python库。(https://github.com/sympy/sympy

  • statsmodels:Python的统计建模及计量经济学库。(https://github.com/statsmodels/statsmodels

  • astropy:Python天文学程序库,社区协作编写。(http://www.astropy.org/

  • matplotlib:Python的2D绘图库。(http://matplotlib.org/

  • bokeh:Python的交互式Web绘图库。(https://github.com/bokeh/bokeh

  • plotly:Python and matplotlib的协作web绘图库。(https://plot.ly/python/

  • vincent:将Python数据结构转换为Vega可视化语法。(https://github.com/wrobstory/vincent

  • d3py:Python的绘图库,基于D3.js。(https://github.com/mikedewar/d3py

  • ggplot:和R语言里的ggplot2提供同样的API。(https://github.com/yhat/ggpy

  • Kartograph.py:Python中渲染SVG图的库,效果漂亮。(https://github.com/kartograph/kartograph.py

  • pygal:Python下的SVG图表生成器。(http://pygal.org/en/stable/

  • pycascading(https://github.com/twitter/pycascading

  杂项脚本/iPython笔记/代码库

  • pattern_classification:(https://github.com/rasbt/pattern_classification

  • thinking stats 2:(https://github.com/Wavelets/ThinkStats2

  • hyperopt:(https://github.com/hyperopt/hyperopt-sklearn

  • numpic:(https://github.com/numenta/nupic

  • 2012-paper-diginorm:(https://github.com/dib-lab/2012-paper-diginorm

  • ipython-notebooks:(https://github.com/ogrisel/notebooks

  • decision-weights:(https://github.com/CamDavidsonPilon/decision-weights

  • Sarah Palin LDA:Sarah Palin关于主题建模的电邮。(https://github.com/Wavelets/sarah-palin-lda

  • Diffusion Segmentation:基于扩散方法的图像分割算法集合。(https://github.com/Wavelets/diffusion-segmentation

  • Scipy Tutorials:SciPy教程,已过时,请查看scipy-lecture-notes。(https://github.com/Wavelets/scipy-tutorials

  • Crab:Python的推荐引擎库。(https://github.com/marcelcaraciolo/crab

  • BayesPy:Python中的贝叶斯推断工具。(https://github.com/maxsklar/BayesPy

  • scikit-learn tutorials:scikit-learn学习笔记系列。(https://github.com/GaelVaroquaux/scikit-learn-tutorial

  • sentiment-analyzer:推特情绪分析器。(https://github.com/madhusudancs/sentiment-analyzer

  • group-lasso:坐标下降算法实验,应用于(稀疏)群套索模型。(https://github.com/fabianp/group_lasso

  • mne-python-notebooks:使用 mne-python进行EEG/MEG数据处理的IPython笔记。(https://github.com/mne-tools/mne-python-notebooks

  • pandas cookbook:使用Python pandas库的方法书。(https://github.com/jvns/pandas-cookbook

  • climin:机器学习的优化程序库,用Python实现了梯度下降、LBFGS、rmsprop、adadelta 等算法。(https://github.com/BRML/climin

  Kaggle竞赛源代码

  • wiki challange:Kaggle上一个维基预测挑战赛 Dell Zhang解法的实现

  https://github.com/hammer/wikichallenge

  • kaggle insults:Kaggle上”从社交媒体评论中检测辱骂“竞赛提交的代码

  https://github.com/amueller/kaggle_insults

  • kaggle_acquire-valued-shoppers-challenge:Kaggle预测回头客挑战赛的代码

  https://github.com/MLWave/%E3%80%82kaggle_acquire-valued-shoppers-challenge

  • kaggle-cifar:Kaggle上CIFAR-10 竞赛的代码,使用cuda-convnet

  https://github.com/zygmuntz/kaggle-cifar

  • kaggle-blackbox:Kaggle上blackbox赛代码,关于深度学习

  https://github.com/zygmuntz/kaggle-blackbox

  • kaggle-accelerometer:Kaggle上加速度计数据识别用户竞赛的代码。

  https://github.com/zygmuntz/kaggle-accelerometer

  • kaggle-advertised-salaries:Kaggle上用广告预测工资竞赛的代码

  https://github.com/zygmuntz/kaggle-advertised-salaries

  • kaggle amazon:Kaggle上给定员工角色预测其访问需求竞赛的代码

  https://github.com/zygmuntz/kaggle-amazon

  • kaggle-bestbuy_big:Kaggle上根据bestbuy用户查询预测点击商品竞赛的代码(大数据版)。

  https://github.com/zygmuntz/kaggle-bestbuy_big

  • kaggle-bestbuy_small:Kaggle上根据bestbuy用户查询预测点击商品竞赛的代码(小数据版)。

  https://github.com/zygmuntz/kaggle-bestbuy_small

  • Kaggle Dogs vs. Cats:Kaggle上从图片中识别猫和狗竞赛的代码。

  https://github.com/kastnerkyle/kaggle-dogs-vs-cats

  • Kaggle Galaxy Challenge:Kaggle上遥远星系形态分类竞赛的优胜代码。

  https://github.com/benanne/kaggle-galaxies

  • Kaggle Gender:Kaggle竞赛,从笔迹区分性别。

  https://github.com/zygmuntz/kaggle-gender

  • Kaggle Merck:Kaggle上预测药物分子活性竞赛的代码(默克制药赞助)

  https://github.com/zygmuntz/kaggle-merck

  • Kaggle Stackoverflow:Kaggle上 预测StackOverflow网站问题是否会被关闭竞赛的代码https://github.com/zygmuntz/kaggle-stackoverflow

  • wine-quality:预测红酒质量

  https://github.com/zygmuntz/wine-quality

你可能感兴趣的:(DL)