GCD Grand Central Dispatch

强悍的中枢调度器
纯C语言,提供了非常多强大的函数
GCD的优势:
GCD是苹果公司为多核的并行运算提出的解决方案
GCD会自动利用更多的CPU内核(比如双核、四核)
GCD会自动管理线程的生命周期(创建线程、调度任务、销毁线程)
程序员只需要告诉GCD想要执行什么任务,不需要编写任何线程管理代码

GCD中有2个核心概念:
任务:执行什么操作
队列:用来存放任务

GCD的使用就2个步骤:
1>定制任务 确定想做的事情
2>将任务添加到队列中 : GCD会自动将队列中的任务取出,放到对应的线程中执行,任务的取出遵循队列的FIFO原则:先进先出,后进后出

执行任务:
GCD中有2个用来执行任务的函数

用同步的方式执行任务
dispatch_sync(dispatch_queue_t queue, dispatch_block_t block);
queue:队列
block:任务
用异步的方式执行任务
dispatch_async(dispatch_queue_t queue, dispatch_block_t block);

同步和异步的区别:
同步:只能在当前线程中执行任务,不具备开启新线程的能力
异步:可以在新的线程中执行任务,具备开启新线程的能力
队列的类型:
GCD的队列可以分为2大类型

并发队列(Concurrent Dispatch Queue)
可以让多个任务并发(同时)执行(自动开启多个线程同时执行任务)
并发功能只有在异步(dispatch_async)函数下才有效

串行队列(Serial Dispatch Queue)
让任务一个接着一个地执行(一个任务执行完毕后,再执行下一个任务)

容易混淆的术语:
有4个术语比较容易混淆:同步异步并发串行

同步和异步主要影响:能不能开启新的线程
同步:在当前线程中执行任务,不具备开启新线程的能力
异步:在新的线程中执行任务,具备开启新线程的能力

并发和串行主要影响:任务的执行方式
并发:多个任务并发(同时)执行
串行:一个任务执行完毕后,再执行下一个任务

并发队列:
GCD默认已经提供了全局的并发队列,供整个应用使用,不需要手动创建
使用dispatch_get_global_queue函数获得全局的并发队列

dispatch_queue_t dispatch_get_global_queue(
dispatch_queue_priority_t priority, // 队列的优先级
unsigned long flags); // 此参数暂时无用,用0即可
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); // 获得全局并发队列

全局并发队列的优先级
#define DISPATCH_QUEUE_PRIORITY_HIGH 2 // 高
#define DISPATCH_QUEUE_PRIORITY_DEFAULT 0 // 默认(中)
#define DISPATCH_QUEUE_PRIORITY_LOW (-2) // 低
#define DISPATCH_QUEUE_PRIORITY_BACKGROUND INT16_MIN // 后台

串行队列:
GCD中获得串行有2种途径
使用dispatch_queue_create函数创建串行队列

dispatch_queue_t
dispatch_queue_create(const char *label, // 队列名称 
dispatch_queue_attr_t attr); // 队列属性,一般用NULL即可
dispatch_queue_t queue = dispatch_queue_create("com.solozyx.queue", NULL); // 创建
//dispatch_release(queue); // 非ARC需要释放手动创建的队列
使用主队列(跟主线程相关联的队列)
主队列是GCD自带的一种特殊的串行队列
放在主队列中的任务,都会放到主线程中执行
使用dispatch_get_main_queue()获得主队列

dispatch_queue_t queue = dispatch_get_main_queue();
GCD Grand Central Dispatch_第1张图片
16-各种队列的执行效果.png

注意
使用sync函数往当前串行队列中添加任务,会卡住当前的串行队列
线程间通信示例:

从子线程回到主线程

dispatch_async(
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    // 执行耗时的异步操作...
      dispatch_async(dispatch_get_main_queue(), ^{
          // 回到主线程,执行UI刷新操作
      });
});

延时执行:
iOS常见的延时执行有2种方式

调用NSObject的方法
[self performSelector:@selector(run) withObject:nil afterDelay:2.0];
// 2秒后再调用self的run方法

使用GCD函数
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
    // 2秒后异步执行这里的代码...
    
});

一次性代码:

使用dispatch_once函数能保证某段代码在程序运行过程中只被执行1次

static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
    // 只执行1次的代码(这里面默认是线程安全的)
});

队列组:
有这么1种需求
首先:分别异步执行2个耗时的操作
其次:等2个异步操作都执行完毕后,再回到主线程执行操作

如果想要快速高效地实现上述需求,可以考虑用队列组

dispatch_group_t group =  dispatch_group_create();
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    // 执行1个耗时的异步操作
});
dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
    // 执行1个耗时的异步操作
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
    // 等前面的异步操作都执行完毕后,回到主线程...
});

单例模式:

单例模式的作用
可以保证在程序运行过程,一个类只有一个实例,而且该实例易于供外界访问
从而方便地控制了实例个数,并节约系统资源

单例模式的使用场合
在整个应用程序中,共享一份资源(这份资源只需要创建初始化1次)

单例模式在ARC\MRC环境下的写法有所不同,需要编写2套不同的代码

可以用宏判断是否为ARC环境

#if __has_feature(objc_arc)
// ARC
#else
// MRC
#endif

单例模式 - ARC:

//ARC中,单例模式的实现
//在.m中保留一个全局的static的实例

static id _instance;

//重写allocWithZone:方法,在这里创建唯一的实例(注意线程安全)

+ (id)allocWithZone:(struct _NSZone *)zone
{
    @synchronized(self) {
        if (!_instance) {
            _instance = [super allocWithZone:zone];
        }
    }
    return _instance;
}

//提供1个类方法让外界访问唯一的实例

+ (instancetype)sharedTool
{
    @synchronized(self) {
        if (!_instance) {
            _instance = [[self alloc] init];
        }
    }
    return _instance;
}

//实现copyWithZone:方法

- (id)copyWithZone:(struct _NSZone *)zone
{
    return _instance;
}

单例模式 – 非ARC:

非ARC中(MRC),单例模式的实现(比ARC多了几个步骤)
实现内存管理方法

- (id)retain { return self; }
- (NSUInteger)retainCount { return 1; }
- (oneway void)release {}
- (id)autorelease { return self; }

你可能感兴趣的:(GCD Grand Central Dispatch)