点击跳转
假设体积为 i i i的物品有 c i c_i ci种
生成函数:
F ( x ) = ∏ i = 1 m ( 1 1 − x i ) c i F(x) = \prod_{i=1}^m ( \frac{1}{1-x^i} )^{c_i} F(x)=i=1∏m(1−xi1)ci
取对数
ln ( F ( x ) ) = ∑ i = 1 m − c i ln ( 1 − x i ) \ln(F(x)) = \sum_{i=1}^{m} -c_i \ln { ( 1-x^i ) } ln(F(x))=i=1∑m−ciln(1−xi)
令 B ( x ) = 1 − x i B(x) = 1 - x^i B(x)=1−xi
则 B ′ ( x ) = d d x B ( x ) = − i x i − 1 B'(x) = \frac{d}{dx}B(x) = -ix^{i-1} B′(x)=dxdB(x)=−ixi−1
( ln B ( x ) ) ′ = B ′ ( x ) B ( x ) = i x i − 1 1 − x i = − i x i − 1 ( 1 + x i + x 2 i + … ) (\ln B(x))' = \frac{B'(x)}{B(x)} = \frac{ix^{i-1}}{1-x^i} = -ix^{i-1}(1+x^i + x^{2i} + \dots) (lnB(x))′=B(x)B′(x)=1−xiixi−1=−ixi−1(1+xi+x2i+…)
( ln B ( x ) ) ′ = − i ∑ k = 1 ∞ x k i − 1 (\ln B(x) )' = -i \sum_{k=1}^\infin x^{ki-1} (lnB(x))′=−i∑k=1∞xki−1
不定积分,常数项给 0 0 0
ln ( B ( x ) ) = − ∑ k = 1 ∞ x k i k \ln (B(x) ) = - \sum_{k=1}^\infin \frac{ x^{ki} } {k} ln(B(x))=−k=1∑∞kxki
这样就求出 l n ( F ( x ) ) ln(F(x)) ln(F(x))了
再 e x p exp exp一下,就得到 F ( x ) F(x) F(x)了
#include
#include
#include
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
#define mod 998244353ll
struct EasyMath
{
ll prime[maxn], phi[maxn], mu[maxn];
bool mark[maxn];
ll fastpow(ll a, ll b, ll c)
{
ll t(a%c), ans(1ll);
for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(!b){x=1,y=0;return;}
ll xx, yy;
exgcd(b,a%b,xx,yy);
x=yy, y=xx-a/b*yy;
}
ll inv(ll x, ll p) //p是素数
{return fastpow(x%p,p-2,p);}
ll inv2(ll a, ll p)
{
ll x, y;
exgcd(a,p,x,y);
return (x+p)%p;
}
void shai(ll N)
{
ll i, j;
for(i=2;i<=N;i++)mark[i]=false;
*prime=0;
phi[1]=mu[1]=1;
for(i=2;i<=N;i++)
{
if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
for(j=1;j<=*prime and i*prime[j]<=N;j++)
{
mark[i*prime[j]]=true;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
{
ll M=1, ans=0, n=a.size(), i;
for(i=0;i<n;i++)M*=m[i];
for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
return ans;
}
}em;
struct NTT
{
ll n;
vector<ll> R;
void init(ll bound) //bound是积多项式的最高次幂
{
ll L(0);
for(n=1;n<=bound;n<<=1,L++);
R.resize(n);
for(ll i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
}
void ntt(vector<ll>& a, int opt)
{
ll i, j, k, wn, w, x, y, inv(em.fastpow(n,mod-2,mod));
for(i=0;i<n;i++)if(i>R[i])swap(a[i],a[R[i]]);
for(i=1;i<n;i<<=1)
{
if(opt==1)wn=em.fastpow(3,(mod-1)/(i<<1),mod);
else wn=em.fastpow(3,(mod-1-(mod-1)/(i<<1)),mod);
for(j=0;j<n;j+=i<<1)
for(w=1,k=0;k<i;k++,w=w*wn%mod)
{
x=a[k+j], y=a[k+j+i]*w%mod;
a[k+j]=(x+y)%mod, a[k+j+i]=(x-y)%mod;
}
}
if(opt==-1)for(i=0;i<n;i++)(a[i]*=inv)%=mod;
}
};
struct Poly
{
vector<ll> v;
ll n; //n是最高次项的次数
Poly(ll N){v.resize(N+1);n=N;}
Poly(const Poly& p){v=p.v; n=p.n;}
void resize(ll N){n=N; v.resize(N+1);}
ll& operator[](ll id){return v[id];}
void show()
{
printf("n=%lld\n",n);
ll i; rep(i,0,n-1)printf("%lldx^%lld + ",(v[i]+mod)%mod,i);
printf("%lldx^%lld\n",(v[n]+mod)%mod,n);
}
};
Poly operator+(Poly A, Poly B)
{
ll i;
Poly C(max(A.n,B.n));
A.resize(C.n), B.resize(C.n);
rep(i,0,C.n)C[i]=A[i]+B[i];
return C;
}
Poly operator*(ll x, Poly A)
{
x%=mod;
ll i; rep(i,0,A.n)(A[i]*=x)%=mod;
return A;
}
Poly operator*(Poly A, Poly B)
{
NTT ntt;
ll i, n=A.n+B.n;
ntt.init(A.n+B.n);
A.resize(ntt.n-1), B.resize(ntt.n-1);
ntt.ntt(A.v,1), ntt.ntt(B.v,1);
Poly C(ntt.n-1);
rep(i,0,C.n)C[i]=(A[i]*B[i])%mod;
ntt.ntt(C.v,-1);
C.resize(n);
return C;
}
Poly operator~(Poly F)
{
Poly H(0), f(0);
ll i, j;
H[0]=em.inv(F[0],mod);
for(i=1;(i>>1)<=F.n;i*=2)
{
f.resize(i-1);
rep(j,0,min(i-1,F.n))f[j]=F[j];
Poly t=H*H*f; t.resize(i-1);
H=2*H+(-1)*t;
}
H.resize(F.n);
return H;
}
Poly ln(Poly A) //常数项必须为1
{
Poly B(A.n);
ll i;
rep(i,1,A.n)B[i-1]=(A[i]*i)%mod;
B=B*~A; B.resize(A.n);
drep(i,A.n,1)B[i]=(B[i-1]*em.inv(i,mod))%mod;
B[0]=0;
return B;
}
Poly exp(Poly A) //常数项必须为0,有Bug,A[j]可能会越界
{
Poly f(0);
ll i, j;
f[0]=1;
for(i=2;(i>>1)<=A.n;i*=2)
{
f.resize(i-1);
Poly t(i-1), g=ln(f);
rep(j,0,i-1)t[j]=(A[j]-g[j]); (++t[0])%=mod;
f=f*t;
}
f.resize(A.n);
return f;
}
int main()
{
ll n=read(), m=read(), i, k;
vector<ll> c(m+5), inv(m+5);
inv[1]=1;rep(i,2,m)inv[i]=inv[mod%i]*(mod-mod/i)%mod;
rep(i,1,n)c[read()]++;
Poly p(m);
rep(i,1,m)
{
if(c[i]==0)continue;
for(k=1;k*i<=m;k++)
{
(p[k*i]+=c[i]*inv[k]%mod)%=mod;
}
}
p = exp(p);
rep(i,1,m)printf("%lld\n",(p[i]+mod)%mod);
return 0;
}