import numpy as np
import torch
from PIL import Image
from nms import nms
from PROnat import Pnet,RNet,ONet
from utils import *
from .first_stage import run_first_stage
device = torch.device("cuda:0" if torch.cuda.is_available else "cpu")
class MTCNN():
def __int__(self):
self.pnet = Pnet().to(device)
self.rnet = RNet().to(device)
self.onet = ONet().to(device)
self.pnet.eval()
self.rnet.eval()
self.onet.eval()
def detect_faces(self,image,min_face_size = 20.0
,thresholds=[0.6,0.7,0.8],
nms_thresholds=[0.7,0.8,0.9]):
width,height = image.size
min_length = min(width,height)
min_detection_size = 12
factor = 0.707
scales = []
m = min_detection_size/min_face_size
min_length*=m
factor_count = 0
while min_length>min_face_size:
scales.append((m*factor**factor_count))
min_length*=factor
factor_count+=1
bounding_boxes = []
with torch.no_grad():
for s in scales:
boxes = run_first_stage(image,self.pnet,scales=s,threshold=thresholds[0])
bounding_boxes.append(boxes)
bounding_boxes = [i for i in bounding_boxes if i is not None]
bounding_boxes = np.vstack(bounding_boxes)
keep = nms(bounding_boxes[:,0:5],nms_thresholds[0])
bounding_boxes = bounding_boxes[keep]
bounding_boxes = calibrate_box(bounding_boxes, bounding_boxes[:, 5:])
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
img_boxes = get_image_boxes(bounding_boxes,image,size=24)
img_boxes = torch.FloatTensor(img_boxes).to(device)
output = self.rnet(img_boxes)
offsets = output[0].cpu().data.numpy()
probs = output[1].cpu().data.numpy()
keep = np.where(probs[:,1]>thresholds[1])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:,4] = probs[keep,1].reshape((-1,))
offsets = offsets[keep]
keep = nms(bounding_boxes,nms_thresholds[1])
bounding_boxes = bounding_boxes[keep]
bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
img_boxes = get_image_boxes(bounding_boxes, image, size=48)
if len(img_boxes) == 0:
return [], []
img_boxes = torch.FloatTensor(img_boxes).to(device)
output = self.onet(img_boxes)
landmarks = output[0].cpu().data.numpy()
offsets = output[1].cpu().data.numpy()
probs = output[2].cpu().data.numpy()
keep = np.where(probs[:, 1] > thresholds[2])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
offsets = offsets[keep]
landmarks = landmarks[keep]
width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]
bounding_boxes = calibrate_box(bounding_boxes, offsets)
keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
bounding_boxes = bounding_boxes[keep]
landmarks = landmarks[keep]
return bounding_boxes, landmarks
import torch
import math
from PIL import Image
import numpy as np
from .utils import _preprocess
from .nms import nms
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def run_first_stage(image, net, scale, threshold):
width, height = image.size
sw, sh = math.ceil(width*scale), math.ceil(height*scale)
img = image.resize((sw, sh), Image.BILINEAR)
img = np.asarray(img, 'float32')
img = torch.FloatTensor(_preprocess(img)).to(device)
with torch.no_grad():
output = net(img)
probs = output[1].cpu().data.numpy()[0, 1, :, :]
offsets = output[0].cpu().data.numpy()
boxes = _generate_bboxes(probs, offsets, scale, threshold)
if len(boxes) == 0:
return None
keep = nms(boxes[:, 0:5], overlap_threshold=0.5)
return boxes[keep]
def _generate_bboxes(probs, offsets, scale, threshold):
stride = 2
cell_size = 12
inds = np.where(probs > threshold)
if inds[0].size == 0:
return np.array([])
tx1, ty1, tx2, ty2 = [offsets[0, i, inds[0], inds[1]] for i in range(4)]
offsets = np.array([tx1, ty1, tx2, ty2])
score = probs[inds[0], inds[1]]
bounding_boxes = np.vstack([
np.round((stride*inds[1] + 1.0)/scale),
np.round((stride*inds[0] + 1.0)/scale),
np.round((stride*inds[1] + 1.0 + cell_size)/scale),
np.round((stride*inds[0] + 1.0 + cell_size)/scale),
score, offsets
])
return bounding_boxes.T
权重地址:https://download.csdn.net/download/Lee_z_Adam/12469511