nasm : use bochs debug boot loader

编译boot loader

Microsoft Windows [版本 6.1.7601]
版权所有 (c) 2009 Microsoft Corporation。保留所有权利。

C:\Users\LostSpeed>d:

D:\>cd D:\prj\nasm_prj\boot\boot_dispmsg

D:\prj\nasm_prj\boot\boot_dispmsg>C:\nasm\nasm.exe -f bin -d UBOOT boot_disp_string_by_call.asm -o boot_2015_0919_2216
-l boot_2015_0919_2216.list


烧写bin文件

用WinHex将boot_2015_0919_2216烧到demo.img 0扇区. 这个实验用U盘和Bochs软盘做,效果是一样的.


配置bochs

* 我是在 bochsrc-sample.txt基础上改出来的 bochsrc-sample.bxrc. 运行bochs时,配置文件哪里写的不对就改哪. 一直改对为止.
# You may now use double quotes around pathnames, in case
# your pathname includes spaces.

#=======================================================================
# PLUGIN_CTRL:
# Controls the presence of optional device plugins. These plugins are loaded
# directly with this option and some of them install a config option that is
# only available when the plugin device is loaded. The value "1" means to load
# the plugin and "0" will unload it (if loaded before).
#
# These plugins will be loaded by default (if present): 'biosdev', 'extfpuirq',
# 'gameport', 'iodebug','parallel', 'serial', 'speaker' and 'unmapped'.
#
# These plugins are also supported, but they are usually loaded directly with
# their bochsrc option: 'e1000', 'es1370', 'ne2k', 'pcidev', 'pcipnic', 'sb16',
# 'usb_ohci', 'usb_uhci', 'usb_xhci' and 'voodoo'.
#=======================================================================
#plugin_ctrl: unmapped=0, e1000=1 # unload 'unmapped' and load 'e1000'

#=======================================================================
# CONFIG_INTERFACE
#
# The configuration interface is a series of menus or dialog boxes that
# allows you to change all the settings that control Bochs's behavior.
# Depending on the platform there are up to 3 choices of configuration
# interface: a text mode version called "textconfig" and two graphical versions
# called "win32config" and "wx".  The text mode version uses stdin/stdout and
# is always compiled in, unless Bochs is compiled for wx only. The choice
# "win32config" is only available on win32 and it is the default there.
# The choice "wx" is only available when you use "--with-wx" on the configure
# command.  If you do not write a config_interface line, Bochs will
# choose a default for you.
#
# NOTE: if you use the "wx" configuration interface, you must also use
# the "wx" display library.
#=======================================================================
#config_interface: textconfig
#config_interface: win32config
#config_interface: wx

#=======================================================================
# DISPLAY_LIBRARY
#
# The display library is the code that displays the Bochs VGA screen.  Bochs 
# has a selection of about 10 different display library implementations for 
# different platforms.  If you run configure with multiple --with-* options, 
# the display_library command lets you choose which one you want to run with.
# If you do not write a display_library line, Bochs will choose a default for
# you.
#
# The choices are: 
#   x              use X windows interface, cross platform
#   win32          use native win32 libraries
#   carbon         use Carbon library (for MacOS X)
#   macintosh      use MacOS pre-10
#   amigaos        use native AmigaOS libraries
#   sdl            use SDL 1.2.x library, cross platform
#   sdl2           use SDL 2.x library, cross platform
#   svga           use SVGALIB library for Linux, allows graphics without X11
#   term           text only, uses curses/ncurses library, cross platform
#   rfb            provides an interface to AT&T's VNC viewer, cross platform
#   vncsrv         use LibVNCServer for extended RFB(VNC) support
#   wx             use wxWidgets library, cross platform
#   nogui          no display at all
#
# NOTE: if you use the "wx" configuration interface, you must also use
# the "wx" display library.
#
# Specific options:
# Some display libraries now support specific options to control their
# behaviour. These options are supported by more than one display library:
#
# "gui_debug"   - use GTK debugger gui (sdl, sdl2, x) / Win32 debugger gui (sdl,
#                 sdl2, win32)
# "hideIPS"     - disable IPS output in status bar (rfb, sdl, sdl2, vncsrv,
#                 win32, wx, x)
# "nokeyrepeat" - turn off host keyboard repeat (sdl, sdl2, win32, x)
# "timeout"     - time (in seconds) to wait for client (rfb, vncsrv)
#
# See the examples below for other currently supported options.
#=======================================================================
#display_library: amigaos
#display_library: carbon
#display_library: macintosh
#display_library: nogui
#display_library: rfb
#display_library: sdl, options="fullscreen" # startup in fullscreen mode
#display_library: sdl2, options="fullscreen" # startup in fullscreen mode
#display_library: term
#display_library: vncsrv
#display_library: win32
#display_library: wx
#display_library: x

#=======================================================================
# CPU:
# This defines cpu-related parameters inside Bochs:
#
#  MODEL:
#    Selects CPU configuration to emulate from pre-defined list of all
#    supported configurations. When this option is used and the value
#    is different from 'bx_generic', the parameters of the CPUID option
#    have no effect anymore.
#
#  CPU configurations that can be selected:
# -----------------------------------------------------------------
#  pentium                    Intel Pentium (P54C)
#  pentium_mmx                Intel Pentium MMX
#  amd_k6_2_chomper           AMD-K6(tm) 3D processor (Chomper)
#  p2_klamath                 Intel Pentium II (Klamath)
#  p3_katmai                  Intel Pentium III (Katmai)
#  p4_willamette              Intel(R) Pentium(R) 4 (Willamette)
#  core_duo_t2400_yonah       Intel(R) Core(TM) Duo CPU T2400 (Yonah)
#  atom_n270                  Intel(R) Atom(TM) CPU N270
#  p4_prescott_celeron_336    Intel(R) Celeron(R) 336 (Prescott)
#  athlon64_clawhammer        AMD Athlon(tm) 64 Processor 2800+ (Clawhammer)
#  athlon64_venice            AMD Athlon(tm) 64 Processor 3000+ (Venice)
#  turion64_tyler             AMD Turion(tm) 64 X2 Mobile TL-60 (Tyler)
#  phenom_8650_toliman        AMD Phenom X3 8650 (Toliman)
#  core2_penryn_t9600         Intel Mobile Core 2 Duo T9600 (Penryn)
#  corei5_lynnfield_750       Intel(R) Core(TM) i5   750 (Lynnfield)
#  corei5_arrandale_m520      Intel(R) Core(TM) i5 M 520 (Arrandale)
#  zambezi                    AMD FX(tm)-4100 Quad-Core Processor (Zambezi)
#  trinity_apu                AMD A8-5600K APU (Trinity)
#  corei7_sandy_bridge_2600k  Intel(R) Core(TM) i7-2600K (Sandy Bridge)
#  corei7_ivy_bridge_3770k    Intel(R) Core(TM) i7-3770K CPU (Ivy Bridge)
#  corei7_haswell_4770        Intel(R) Core(TM) i7-4770 CPU (Haswell)
#  broadwell_ult              Intel(R) Processor 5Y70 CPU (Broadwell)
#
#  COUNT:
#    Set the number of processors:cores per processor:threads per core when
#    Bochs is compiled for SMP emulation. Bochs currently supports up to
#    14 threads (legacy APIC) or 254 threads (xAPIC or higher) running
#    simultaniosly. If Bochs is compiled without SMP support, it won't accept
#    values different from 1.
#
#  QUANTUM:
#    Maximum amount of instructions allowed to execute by processor before
#    returning control to another cpu. This option exists only in Bochs 
#    binary compiled with SMP support.
#
#  RESET_ON_TRIPLE_FAULT:
#    Reset the CPU when triple fault occur (highly recommended) rather than
#    PANIC. Remember that if you trying to continue after triple fault the 
#    simulation will be completely bogus !
#
#  CPUID_LIMIT_WINNT:
#    Determine whether to limit maximum CPUID function to 2. This mode is
#    required to workaround WinNT installation and boot issues.
#
#  MSRS:
#    Define path to user CPU Model Specific Registers (MSRs) specification.
#    See example in msrs.def.
#
#  IGNORE_BAD_MSRS:
#    Ignore MSR references that Bochs does not understand; print a warning
#    message instead of generating #GP exception. This option is enabled
#    by default but will not be avaiable if configurable MSRs are enabled.
#
#  MWAIT_IS_NOP:
#    When this option is enabled MWAIT will not put the CPU into a sleep state.
#    This option exists only if Bochs compiled with --enable-monitor-mwait.
#
#  IPS:
#    Emulated Instructions Per Second. This is the number of IPS that bochs
#    is capable of running on your machine. You can recompile Bochs with
#    --enable-show-ips option enabled, to find your host's capability.
#    Measured IPS value will then be logged into your log file or shown
#    in the status bar (if supported by the gui).
#
#    IPS is used to calibrate many time-dependent events within the bochs 
#    simulation.  For example, changing IPS affects the frequency of VGA
#    updates, the duration of time before a key starts to autorepeat, and
#    the measurement of BogoMips and other benchmarks.
#
#  Examples:
#
#  Bochs Machine/Compiler                                 Mips
# ______________________________________________________________________
#  2.4.6 3.4Ghz Intel Core i7 2600 with Win7x64/g++ 4.5.2 85 to 95 Mips
#  2.3.7 3.2Ghz Intel Core 2 Q9770 with WinXP/g++ 3.4     50 to 55 Mips
#  2.3.7 2.6Ghz Intel Core 2 Duo with WinXP/g++ 3.4       38 to 43 Mips
#  2.2.6 2.6Ghz Intel Core 2 Duo with WinXP/g++ 3.4       21 to 25 Mips
#  2.2.6 2.1Ghz Athlon XP with Linux 2.6/g++ 3.4          12 to 15 Mips
#=======================================================================
cpu: model=core2_penryn_t9600, count=1, ips=50000000, reset_on_triple_fault=1, ignore_bad_msrs=1, msrs="msrs.def"
cpu: cpuid_limit_winnt=0

#=======================================================================
# CPUID:
#
# This defines features and functionality supported by Bochs emulated CPU.
# The option has no offect if CPU model was selected in CPU option.
#
#  MMX:
#    Select MMX instruction set support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 5.
#
#  APIC:
#    Select APIC configuration (LEGACY/XAPIC/XAPIC_EXT/X2APIC).
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 5.
#
#  SEP:
#    Select SYSENTER/SYSEXIT instruction set support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  SIMD:
#    Select SIMD instructions support.
#    Any of NONE/SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2/AVX/AVX2/AVX512
#    could be selected.
#
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#    The AVX choises exists only if Bochs compiled with --enable-avx option.
#
#  SSE4A:
#    Select AMD SSE4A instructions support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  MISALIGNED_SSE:
#    Select AMD Misaligned SSE mode support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  AES:
#    Select AES instruction set support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  SHA:
#    Select SHA instruction set support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  MOVBE:
#    Select MOVBE Intel(R) Atom instruction support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  ADX:
#    Select ADCX/ADOX instructions support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  XSAVE:
#    Select XSAVE extensions support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  XSAVEOPT:
#    Select XSAVEOPT instruction support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  AVX_F16C:
#    Select AVX float16 convert instructions support.
#    This option exists only if Bochs compiled with --enable-avx option.
#
#  AVX_FMA:
#    Select AVX fused multiply add (FMA) instructions support.
#    This option exists only if Bochs compiled with --enable-avx option.
#
#  BMI:
#    Select BMI1/BMI2 instructions support.
#    This option exists only if Bochs compiled with --enable-avx option.
#
#  XOP:
#    Select AMD XOP instructions support.
#    This option exists only if Bochs compiled with --enable-avx option.
#
#  FMA4:
#    Select AMD four operand FMA instructions support.
#    This option exists only if Bochs compiled with --enable-avx option.
#
#  TBM:
#    Select AMD Trailing Bit Manipulation (TBM) instructions support.
#    This option exists only if Bochs compiled with --enable-avx option.
#
#  X86-64:
#    Enable x86-64 and long mode support.
#    This option exists only if Bochs compiled with x86-64 support.
#
#  1G_PAGES:
#    Enable 1G page size support in long mode.
#    This option exists only if Bochs compiled with x86-64 support.
#
#  PCID:
#    Enable Process-Context Identifiers (PCID) support in long mode.
#    This option exists only if Bochs compiled with x86-64 support.
#
#  FSGSBASE:
#    Enable GS/GS BASE access instructions support in long mode.
#    This option exists only if Bochs compiled with x86-64 support.
#
#  SMEP:
#    Enable Supervisor Mode Execution Protection (SMEP) support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  SMAP:
#    Enable Supervisor Mode Access Prevention (SMAP) support.
#    This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
#
#  MWAIT:
#    Select MONITOR/MWAIT instructions support.
#    This option exists only if Bochs compiled with --enable-monitor-mwait.
#
#  VMX:
#    Select VMX extensions emulation support.
#    This option exists only if Bochs compiled with --enable-vmx option.
#
#  SVM:
#    Select AMD SVM (Secure Virtual Machine) extensions emulation support.
#    This option exists only if Bochs compiled with --enable-svm option.
#
#  VENDOR_STRING:
#    Set the CPUID vendor string returned by CPUID(0x0). This should be a
#    twelve-character ASCII string.  
#
#  BRAND_STRING:
#    Set the CPUID vendor string returned by CPUID(0x80000002 .. 0x80000004).  
#    This should be at most a forty-eight-character ASCII string.  
#
#  LEVEL:
#    Set emulated CPU level information returned by CPUID. Default value is
#    determined by configure option --enable-cpu-level. Currently supported
#    values are 5 (for Pentium and similar processors) and 6 (for P6 and
#    later processors).
#
#  FAMILY:
#    Set model information returned by CPUID. Default family value determined
#    by configure option --enable-cpu-level.
#
#  MODEL:
#    Set model information returned by CPUID. Default model value is 3.
#
#  STEPPING:
#    Set stepping information returned by CPUID. Default stepping value is 3.
#=======================================================================
#cpuid: x86_64=1, mmx=1, sep=1, simd=sse4_2, apic=xapic, aes=1, movbe=1, xsave=1
#cpuid: family=6, model=0x1a, stepping=5

#=======================================================================
# MEMORY
# Set the amount of physical memory you want to emulate.
#
# GUEST:
# Set amount of guest physical memory to emulate. The default is 32MB,
# the maximum amount limited only by physical address space limitations.
#
# HOST:
# Set amount of host memory you want to allocate for guest RAM emulation.
# It is possible to allocate less memory than you want to emulate in guest
# system. This will fake guest to see the non-existing memory. Once guest
# system touches new memory block it will be dynamically taken from the
# memory pool. You will be warned (by FATAL PANIC) in case guest already
# used all allocated host memory and wants more.
#
#=======================================================================
memory: guest=512, host=256

#=======================================================================
# ROMIMAGE:
# The ROM BIOS controls what the PC does when it first powers on.
# Normally, you can use a precompiled BIOS in the source or binary
# distribution called BIOS-bochs-latest. The default ROM BIOS is usually loaded
# starting at address 0xfffe0000, and it is exactly 128k long. The legacy
# version of the Bochs BIOS is usually loaded starting at address 0xffff0000,
# and it is exactly 64k long.
# You can use the environment variable $BXSHARE to specify the location
# of the BIOS.
# The usage of external large BIOS images (up to 512k) at memory top is
# now supported, but we still recommend to use the BIOS distributed with Bochs.
# The start address is optional, since it can be calculated from image size.
#=======================================================================
romimage: file=$BXSHARE/BIOS-bochs-latest 
#romimage: file=$BXSHARE/bios.bin-1.7.5 # http://www.seabios.org/SeaBIOS
#romimage: file=mybios.bin, address=0xfff80000 # 512k at memory top

#=======================================================================
# VGAROMIMAGE
# You now need to load a VGA ROM BIOS into C0000.
#=======================================================================
#vgaromimage: file=bios/VGABIOS-elpin-2.40
vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest
#vgaromimage: file=bios/VGABIOS-lgpl-latest-cirrus

#=======================================================================
# OPTROMIMAGE[1-4]:
# You may now load up to 4 optional ROM images. Be sure to use a 
# read-only area, typically between C8000 and EFFFF. These optional
# ROM images should not overwrite the rombios (located at
# F0000-FFFFF) and the videobios (located at C0000-C7FFF).
# Those ROM images will be initialized by the bios if they contain 
# the right signature (0x55AA) and a valid checksum.
# It can also be a convenient way to upload some arbitrary code/data
# in the simulation, that can be retrieved by the boot loader
#=======================================================================
#optromimage1: file=optionalrom.bin, address=0xd0000
#optromimage2: file=optionalrom.bin, address=0xd1000
#optromimage3: file=optionalrom.bin, address=0xd2000
#optromimage4: file=optionalrom.bin, address=0xd3000

#optramimage1: file=/path/file1.img, address=0x0010000
#optramimage2: file=/path/file2.img, address=0x0020000
#optramimage3: file=/path/file3.img, address=0x0030000
#optramimage4: file=/path/file4.img, address=0x0040000

#=======================================================================
# VGA:
# This defines parameters related to the VGA display
#
#   EXTENSION
#     Here you can specify the display extension to be used. With the value
#     'none' you can use standard VGA with no extension. Other supported
#     values are 'vbe' for Bochs VBE and 'cirrus' for Cirrus SVGA support.
#
#   UPDATE_FREQ
#     This parameter specifies the number of display updates per second.
#     The VGA update timer now uses the realtime engine and the default
#     value is 5. This parameter can be changed at runtime.
#
#   REALTIME
#     If set to 1, the VGA timer is based on realtime, otherwise it is based
#     on the ips setting. If the host is slow (low ips, update_freq) and the
#     guest uses HLT appropriately, setting this to 0 and "clock: sync=none"
#     may improve the responsiveness of the guest GUI when the guest is
#     otherwise idle. The default value is 1.
#
# Examples:
#   vga: extension=cirrus, update_freq=10
#=======================================================================
#vga: extension=vbe, update_freq=5, realtime=1

#=======================================================================
# VOODOO:
# This defines the Voodoo Graphics emulation (experimental). Currently
# supported models are 'voodoo1' and 'voodoo2'. The Voodoo2 support is
# not yet complete.
#
# Examples:
#   voodoo: enabled=1, model=voodoo1
#=======================================================================
#voodoo: enabled=1, model=voodoo1

#=======================================================================
# KEYBOARD:
# This defines parameters related to the emulated keyboard
#
#   TYPE:
#     Type of keyboard return by a "identify keyboard" command to the
#     keyboard controller. It must be one of "xt", "at" or "mf".
#     Defaults to "mf". It should be ok for almost everybody. A known
#     exception is french macs, that do have a "at"-like keyboard.
#
#   SERIAL_DELAY:
#     Approximate time in microseconds that it takes one character to
#     be transferred from the keyboard to controller over the serial path.
#
#   PASTE_DELAY:
#     Approximate time in microseconds between attempts to paste
#     characters to the keyboard controller. This leaves time for the
#     guest os to deal with the flow of characters.  The ideal setting
#     depends on how your operating system processes characters.  The
#     default of 100000 usec (.1 seconds) was chosen because it works 
#     consistently in Windows.
#     If your OS is losing characters during a paste, increase the paste
#     delay until it stops losing characters.
#
#   KEYMAP:
#     This enables a remap of a physical localized keyboard to a
#     virtualized us keyboard, as the PC architecture expects.
#
#   USER_SHORTCUT:
#     This defines the keyboard shortcut to be sent when you press the "user"
#     button in the headerbar. The shortcut string is a combination of maximum
#     3 key names (listed below) separated with a '-' character.
#     Valid key names:
#     "alt", "bksl", "bksp", "ctrl", "del", "down", "end", "enter", "esc",
#     "f1", ... "f12", "home", "ins", "left", "menu", "minus", "pgdwn", "pgup",
#     "plus", "power", "print", "right", "scrlck", "shift", "space", "tab", "up"
#     and "win".

# Examples:
#   keyboard: type=mf, serial_delay=200, paste_delay=100000
#   keyboard: keymap=gui/keymaps/x11-pc-de.map
#   keyboard: user_shortcut=ctrl-alt-del
#=======================================================================
#keyboard: type=mf, serial_delay=250

#=======================================================================
# MOUSE:
# This defines parameters for the emulated mouse type, the initial status
# of the mouse capture and the runtime method to toggle it.
#
#  TYPE:
#  With the mouse type option you can select the type of mouse to emulate.
#  The default value is 'ps2'. The other choices are 'imps2' (wheel mouse
#  on PS/2), 'serial', 'serial_wheel', 'serial_msys' (one com port requires
#  setting 'mode=mouse') and 'bus' (if present). To connect a mouse to an
#  USB port, see the 'usb_uhci', 'usb_ohci' or 'usb_xhci' options (requires
#  PCI and USB support).
#
#  ENABLED:
#  The Bochs gui creates mouse "events" unless the 'enabled' option is
#  set to 0. The hardware emulation itself is not disabled by this.
#  Unless you have a particular reason for enabling the mouse by default,
#  it is recommended that you leave it off. You can also toggle the mouse
#  usage at runtime (RFB, SDL, Win32, wxWidgets and X11 - see below).
#
#  TOGGLE:
#  The default method to toggle the mouse capture at runtime is to press the
#  CTRL key and the middle mouse button ('ctrl+mbutton'). This option allows
#  to change the method to 'ctrl+f10' (like DOSBox), 'ctrl+alt' (like QEMU)
#  or 'f12' (replaces win32 'legacyF12' option).
#
# Examples:
#   mouse: enabled=1
#   mouse: type=imps2, enabled=1
#   mouse: type=serial, enabled=1
#   mouse: enabled=0, toggle=ctrl+f10
#=======================================================================
mouse: enabled=0

#=======================================================================
# PCI:
# This option controls the presence of a PCI chipset in Bochs. Currently it only
# supports the i430FX and i440FX chipsets. You can also specify the devices
# connected to PCI slots. Up to 5 slots are available. For these combined PCI/ISA
# devices assigning to slot is mandatory if you want to emulate the PCI model:
# cirrus, ne2k and pcivga. These PCI-only devices are also supported, but they
# are auto-assigned if you don't use the slot configuration: e1000, es1370,
# pcidev, pcipnic, usb_ohci, usb_xhci and voodoo.
#
# Example:
#   pci: enabled=1, chipset=i440fx, slot1=pcivga, slot2=ne2k
#=======================================================================
pci: enabled=1, chipset=i440fx

#=======================================================================
# CLOCK:
# This defines the parameters of the clock inside Bochs:
#
#  SYNC:
#  This defines the method how to synchronize the Bochs internal time
#  with realtime. With the value 'none' the Bochs time relies on the IPS
#  value and no host time synchronization is used. The 'slowdown' method
#  sacrifices performance to preserve reproducibility while allowing host
#  time correlation. The 'realtime' method sacrifices reproducibility to
#  preserve performance and host-time correlation.
#  It is possible to enable both synchronization methods.
#
#  RTC_SYNC:
#  If this option is enabled together with the realtime synchronization,
#  the RTC runs at realtime speed. This feature is disabled by default.
#
#  TIME0:
#  Specifies the start (boot) time of the virtual machine. Use a time
#  value as returned by the time(2) system call or a string as returned
#  by the ctime(3) system call. If no time0 value is set or if time0
#  equal to 1 (special case) or if time0 equal 'local', the simulation
#  will be started at the current local host time. If time0 equal to 2
#  (special case) or if time0 equal 'utc', the simulation will be started
#  at the current utc time.
#
# Syntax:
#  clock: sync=[none|slowdown|realtime|both], time0=[timeValue|local|utc]
#
# Example:
#   clock: sync=none,     time0=local       # Now (localtime)
#   clock: sync=slowdown, time0=315529200   # Tue Jan  1 00:00:00 1980
#   clock: sync=none,     time0="Mon Jan  1 00:00:00 1990" # 631148400
#   clock: sync=realtime, time0=938581955   # Wed Sep 29 07:12:35 1999
#   clock: sync=realtime, time0="Sat Jan  1 00:00:00 2000" # 946681200
#   clock: sync=none,     time0=1           # Now (localtime)
#   clock: sync=none,     time0=utc         # Now (utc/gmt)
#
# Default value are sync=none, rtc_sync=0, time0=local
#=======================================================================
#clock: sync=none, time0=local

#=======================================================================
# CMOSIMAGE:
# This defines image file that can be loaded into the CMOS RAM at startup.
# The rtc_init parameter controls whether initialize the RTC with values stored
# in the image. By default the time0 argument given to the clock option is used.
# With 'rtc_init=image' the image is the source for the initial time.
#
# Example:
#   cmosimage: file=cmos.img, rtc_init=image
#=======================================================================
#cmosimage: file=cmos.img, rtc_init=time0

#=======================================================================
# private_colormap: Request that the GUI create and use it's own
#                   non-shared colormap.  This colormap will be used
#                   when in the bochs window.  If not enabled, a
#                   shared colormap scheme may be used.  Not implemented
#                   on all GUI's.
#
# Examples:
#   private_colormap: enabled=1
#   private_colormap: enabled=0
#=======================================================================
private_colormap: enabled=0

#=======================================================================
# FLOPPYA:
# Point this to pathname of floppy image file or device
# This should be of a bootable floppy(image/device) if you're
# booting from 'a' (or 'floppy').
#
# You can set the initial status of the media to 'ejected' or 'inserted'.
#   floppya: 2_88=path, status=ejected    (2.88M 3.5"  media)
#   floppya: 1_44=path, status=inserted   (1.44M 3.5"  media)
#   floppya: 1_2=path, status=ejected     (1.2M  5.25" media)
#   floppya: 720k=path, status=inserted   (720K  3.5"  media)
#   floppya: 360k=path, status=inserted   (360K  5.25" media)
#   floppya: 320k=path, status=inserted   (320K  5.25" media)
#   floppya: 180k=path, status=inserted   (180K  5.25" media)
#   floppya: 160k=path, status=inserted   (160K  5.25" media)
#   floppya: image=path, status=inserted  (guess media type from image size)
#   floppya: 1_44=vvfat:path, status=inserted  (use directory as VFAT media)
#   floppya: type=1_44                    (1.44M 3.5" floppy drive, no media)
#
# The path should be the name of a disk image file.  On Unix, you can use a raw
# device name such as /dev/fd0 on Linux.  On win32 platforms, use drive letters
# such as a: or b: as the path.  The parameter 'image' works with image files
# only. In that case the size must match one of the supported types.
# The parameter 'type' can be used to enable the floppy drive without media
# and status specified. Usually the drive type is set up based on the media type.
# The optional parameter 'write_protected' can be used to control the media
# write protect switch. By default it is turned off.
#=======================================================================
#floppya: 1_44=/dev/fd0, status=inserted
#floppya: image=../1.44, status=inserted
#floppya: 1_44=/dev/fd0H1440, status=inserted
#floppya: 1_2=../1_2, status=inserted
#floppya: 1_44=a:, status=inserted
#floppya: 1_44=a.img, status=inserted, write_protected=1
#floppya: 1_44=/dev/rfd0a, status=inserted
floppya: image="demo.img", status=inserted

#=======================================================================
# FLOPPYB:
# See FLOPPYA above for syntax
#=======================================================================
#floppyb: 1_44=b:, status=inserted
#floppyb: 1_44=b.img, status=inserted

#=======================================================================
# ATA0, ATA1, ATA2, ATA3
# ATA controller for hard disks and cdroms
#
# ata[0-3]: enabled=[0|1], ioaddr1=addr, ioaddr2=addr, irq=number
# 
# These options enables up to 4 ata channels. For each channel
# the two base io addresses and the irq must be specified.
# 
# ata0 and ata1 are enabled by default with the values shown below
#
# Examples:
#   ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14
#   ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15
#   ata2: enabled=1, ioaddr1=0x1e8, ioaddr2=0x3e0, irq=11
#   ata3: enabled=1, ioaddr1=0x168, ioaddr2=0x360, irq=9
#=======================================================================
ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14
ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15
ata2: enabled=0, ioaddr1=0x1e8, ioaddr2=0x3e0, irq=11
ata3: enabled=0, ioaddr1=0x168, ioaddr2=0x360, irq=9

#=======================================================================
# ATA[0-3]-MASTER, ATA[0-3]-SLAVE
#
# This defines the type and characteristics of all attached ata devices:
#   type=       type of attached device [disk|cdrom] 
#   mode=       only valid for disks [flat|concat|external|dll|sparse|vmware3]
#                                    [vmware4|undoable|growing|volatile|vpc]
#                                    [vbox|vvfat]
#   path=       path of the image / directory
#   cylinders=  only valid for disks
#   heads=      only valid for disks
#   spt=        only valid for disks
#   status=     only valid for cdroms [inserted|ejected]
#   biosdetect= type of biosdetection [none|auto], only for disks on ata0 [cmos]
#   translation=type of translation of the bios, only for disks [none|lba|large|rechs|auto]
#   model=      string returned by identify device command
#   journal=    optional filename of the redolog for undoable, volatile and vvfat disks
#
# Point this at a hard disk image file, cdrom iso file, or physical cdrom
# device.  To create a hard disk image, try running bximage.  It will help you
# choose the size and then suggest a line that works with it.
#
# In UNIX it may be possible to use a raw device as a Bochs hard disk, 
# but WE DON'T RECOMMEND IT.  In Windows there is no easy way.
#
# In windows, the drive letter + colon notation should be used for cdroms.
# Depending on versions of windows and drivers, you may only be able to 
# access the "first" cdrom in the system.  On MacOSX, use path="drive"
# to access the physical drive.
#
# The path is mandatory for hard disks. Disk geometry autodetection works with
# images created by bximage if CHS is set to 0/0/0 (cylinders are calculated
# using  heads=16 and spt=63). For other hard disk images and modes the
# cylinders, heads, and spt are mandatory. In all cases the disk size reported
# from the image must be exactly C*H*S*512.
#
# Default values are:
#   mode=flat, biosdetect=auto, translation=auto, model="Generic 1234"
#
# The biosdetect option has currently no effect on the bios
#
# Examples:
#   ata0-master: type=disk, mode=flat, path=10M.sample, cylinders=306, heads=4, spt=17
#   ata0-slave:  type=disk, mode=flat, path=20M.sample, cylinders=615, heads=4, spt=17
#   ata1-master: type=disk, mode=flat, path=30M.sample, cylinders=615, heads=6, spt=17
#   ata1-slave:  type=disk, mode=flat, path=46M.sample, cylinders=940, heads=6, spt=17
#   ata2-master: type=disk, mode=flat, path=62M.sample, cylinders=940, heads=8, spt=17
#   ata2-slave:  type=disk, mode=flat, path=112M.sample, cylinders=900, heads=15, spt=17
#   ata3-master: type=disk, mode=flat, path=483M.sample, cylinders=1024, heads=15, spt=63
#   ata3-slave:  type=cdrom, path=iso.sample, status=inserted
#=======================================================================
#ata0-master: type=disk, mode=flat, path="30M.sample"
#ata0-master: type=disk, mode=flat, path="30M.sample", cylinders=615, heads=6, spt=17
#ata0-master: type=disk, mode=flat, path="c.img", cylinders=0 # autodetect
#ata0-slave: type=disk, mode=vvfat, path=/bochs/images/vvfat, journal=vvfat.redolog
#ata0-slave: type=cdrom, path=D:, status=inserted
#ata0-slave: type=cdrom, path=/dev/cdrom, status=inserted
#ata0-slave: type=cdrom, path="drive", status=inserted
#ata0-slave: type=cdrom, path=/dev/rcd0d, status=inserted 

#=======================================================================
# BOOT:
# This defines the boot sequence. Now you can specify up to 3 boot drives,
# which can be 'floppy', 'disk', 'cdrom' or 'network' (boot ROM).
# Legacy 'a' and 'c' are also supported.
# Examples:
#   boot: floppy
#   boot: cdrom, disk
#   boot: network, disk
#   boot: cdrom, floppy, disk
#=======================================================================
boot: floppy
#boot: disk

#=======================================================================
# FLOPPY_BOOTSIG_CHECK: disabled=[0|1]
# Enables or disables the 0xaa55 signature check on boot floppies
# Defaults to disabled=0
# Examples:
#   floppy_bootsig_check: disabled=0
#   floppy_bootsig_check: disabled=1
#=======================================================================
floppy_bootsig_check: disabled=0

#=======================================================================
# LOG:
# Give the path of the log file you'd like Bochs debug and misc. verbiage
# to be written to. If you don't use this option or set the filename to
# '-' the output is written to the console. If you really don't want it,
# make it "/dev/null" (Unix) or "nul" (win32). :^(
#
# Examples:
#   log: ./bochs.out
#   log: /dev/tty
#=======================================================================
#log: /dev/null
log: bochsout.txt

#=======================================================================
# LOGPREFIX:
# This handles the format of the string prepended to each log line.
# You may use those special tokens :
#   %t : 11 decimal digits timer tick
#   %i : 8 hexadecimal digits of cpu current eip (ignored in SMP configuration)
#   %e : 1 character event type ('i'nfo, 'd'ebug, 'p'anic, 'e'rror)
#   %d : 5 characters string of the device, between brackets
# 
# Default : %t%e%d
# Examples:
#   logprefix: %t-%e-@%i-%d
#   logprefix: %i%e%d
#=======================================================================
#logprefix: %t%e%d

#=======================================================================
# LOG CONTROLS
#
# Bochs has four severity levels for event logging.
#   panic: cannot proceed.  If you choose to continue after a panic, 
#          don't be surprised if you get strange behavior or crashes.
#   error: something went wrong, but it is probably safe to continue the
#          simulation.
#   info: interesting or useful messages.
#   debug: messages useful only when debugging the code.  This may
#          spit out thousands per second.
#
# For events of each level, you can choose to exit Bochs ('fatal'), 'report'
# or 'ignore'. On some guis you have the additional choice 'ask'. A gui dialog
# appears asks how to proceed.
#
# It is also possible to specify the 'action' to do for each Bochs facility
# separately (e.g. crash on panics from everything except the cdrom, and only
# report those). See the 'log function' module list in the user documentation.
#
# If you are experiencing many panics, it can be helpful to change
# the panic action to report instead of fatal.  However, be aware
# that anything executed after a panic is uncharted territory and can 
# cause bochs to become unstable.  The panic is a "graceful exit," so
# if you disable it you may get a spectacular disaster instead.
#=======================================================================
panic: action=ask
error: action=report
info: action=report
debug: action=ignore, pci=report # report BX_DEBUG from module 'pci'

#=======================================================================
# DEBUGGER_LOG:
# Give the path of the log file you'd like Bochs to log debugger output.
# If you really don't want it, make it /dev/null or '-'. :^(
#
# Examples:
#   debugger_log: ./debugger.out
#=======================================================================
#debugger_log: /dev/null
#debugger_log: debugger.out
debugger_log: -

#=======================================================================
# COM1, COM2, COM3, COM4:
# This defines a serial port (UART type 16550A). In the 'term' mode you can
# specify a device to use as com1. This can be a real serial line, or a pty.
# To use a pty (under X/Unix), create two windows (xterms, usually).  One of
# them will run bochs, and the other will act as com1. Find out the tty the com1
# window using the `tty' command, and use that as the `dev' parameter.
# Then do `sleep 1000000' in the com1 window to keep the shell from
# messing with things, and run bochs in the other window.  Serial I/O to
# com1 (port 0x3f8) will all go to the other window.
# In socket* and pipe* (win32 only) modes Bochs becomes either socket/named pipe
# client or server. In client mode it connects to an already running server (if
# connection fails Bochs treats com port as not connected). In server mode it
# opens socket/named pipe and waits until a client application connects to it
# before starting simulation. This mode is useful for remote debugging (e.g.
# with gdb's "target remote host:port" command or windbg's command line option
# -k com:pipe,port=\\.\pipe\pipename). Socket modes use simple TCP communication,
#  pipe modes use duplex byte mode pipes.
# Other serial modes are 'null' (no input/output), 'file' (output to a file
# specified as the 'dev' parameter), 'raw' (use the real serial port - under
# construction for win32), 'mouse' (standard serial mouse - requires
# mouse option setting 'type=serial', 'type=serial_wheel' or 'type=serial_msys').
#
# Examples:
#   com1: enabled=1, mode=null
#   com1: enabled=1, mode=mouse
#   com2: enabled=1, mode=file, dev=serial.out
#   com3: enabled=1, mode=raw, dev=com1
#   com3: enabled=1, mode=socket-client, dev=localhost:8888
#   com3: enabled=1, mode=socket-server, dev=localhost:8888
#   com4: enabled=1, mode=pipe-client, dev=\\.\pipe\mypipe
#   com4: enabled=1, mode=pipe-server, dev=\\.\pipe\mypipe
#=======================================================================
#com1: enabled=1, mode=term, dev=/dev/ttyp9


#=======================================================================
# PARPORT1, PARPORT2:
# This defines a parallel (printer) port. When turned on and an output file is
# defined the emulated printer port sends characters printed by the guest OS
# into the output file. On some platforms a device filename can be used to
# send the data to the real parallel port (e.g. "/dev/lp0" on Linux, "lpt1" on
# win32 platforms).
#
# Examples:
#   parport1: enabled=1, file="parport.out"
#   parport2: enabled=1, file="/dev/lp0"
#   parport1: enabled=0
#=======================================================================
parport1: enabled=1, file="parport.out"

#=======================================================================
# SOUND:
# This defines the lowlevel sound driver(s) for the wave (PCM) input / output
# and the MIDI output feature and (if necessary) the devices to be used.
# It can have several of the following properties.
# All properties are in the format sound: property=value
#
# waveoutdrv:
#      This defines the driver to be used for the waveout feature.
#      Possible values are 'file' (all wave data sent to file), 'dummy' (no
#      output) and the platform-dependant drivers 'alsa', 'oss', 'osx', 'sdl'
#      and 'win'.
# waveout:
#      This defines the device to be used for wave output (if necessary) or
#      the output file for the 'file' driver.
# waveindrv:
#      This defines the driver to be used for the wavein feature.
#      Possible values are 'dummy' (recording silence) and platform-dependent
#      drivers 'alsa', 'oss' and 'win'.
# wavein:
#      This defines the device to be used for wave output (if necessary).
# midioutdrv:
#      This defines the driver to be used for the MIDI output feature.
#      Possible values are 'file' (all MIDI data sent to file), 'dummy' (no
#      output) and platform-dependent drivers 'alsa', 'oss', 'osx' and 'win'.
# midiout:
#      This defines the device to be used for MIDI output (if necessary).
# driver:
#      This defines the driver to be used for all sound features with one
#      property. Possible values are 'default' (platform default) and all
#      other choices described above. Overriding one or more settings with
#      the specific driver parameter is possible.
#
# Example for different drivers:
#   sound: waveoutdrv=sdl, waveindrv=alsa, midioutdrv=dummy
#=======================================================================
sound: driver=default, waveout=/dev/dsp. wavein=, midiout=

#=======================================================================
# SPEAKER:
# This defines the PC speaker output mode. In the 'sound' mode the beep
# is generated by the square wave generator which is a part of the
# lowlevel sound support. The 'system' mode is only available on Linux
# and Windows. On Linux /dev/console is used for output and on Windows
# the Beep() function. The 'gui' mode forwards the beep to the related
# gui methods (currently only used by the Carbon gui).
#=======================================================================
speaker: enabled=1, mode=sound

#=======================================================================
# SB16:
# This defines the SB16 sound emulation. It can have several of the
# following properties.
# All properties are in the format sb16: property=value
#
# enabled:
#      This optional property controls the presence of the SB16 emulation.
#      The emulation is turned on unless this property is used and set to 0.
# midimode: This parameter specifies what to do with the MIDI output.
#      0 = no output
#      1 = output to device specified with the sound option (system dependent)
#      2 = MIDI or raw data output to file (depends on file name extension)
#      3 = dual output (mode 1 and 2 at the same time)
# midifile: This is the file where the midi output is stored (midimode 2 or 3).
# wavemode: This parameter specifies what to do with the PCM output.
#      0 = no output
#      1 = output to device specified with the sound option (system dependent)
#      2 = VOC, WAV or raw data output to file (depends on file name extension)
#      3 = dual output (mode 1 and 2 at the same time)
# wavefile: This is the file where the wave output is stored (wavemode 2 or 3).
# loglevel:
#      0=no log
#      1=resource changes, midi program and bank changes
#      2=severe errors
#      3=all errors
#      4=all errors plus all port accesses
#      5=all errors and port accesses plus a lot of extra info
# log:  The file to write the sb16 emulator messages to.
# dmatimer:
#      microseconds per second for a DMA cycle.  Make it smaller to fix
#      non-continuous sound.  750000 is usually a good value.  This needs a
#      reasonably correct setting for the IPS parameter of the CPU option.
#
# Examples for output modes:
#   sb16: midimode=2, midifile="output.mid", wavemode=1 # MIDI to file
#   sb16: midimode=1, wavemode=3, wavefile="output.wav" # wave to file and device
#=======================================================================
#sb16: midimode=1, wavemode=1, loglevel=2, log=sb16.log, dmatimer=600000

#=======================================================================
# ES1370:
# This defines the ES1370 sound emulation (recording and playback - except
# DAC1+DAC2 output at the same time). The parameter 'enabled' controls the
# presence of the device. The wave and MIDI output can be sent to device, file
# or both using the parameters 'wavemode', 'wavefile', 'midimode' and
# 'midifile'. See the description of these parameters at the SB16 directive.
#
# Examples:
#   es1370: enabled=1, wavemode=1                       # use 'sound' parameters
#   es1370: enabled=1, wavemode=2, wavefile=output.voc  # send output to file
#=======================================================================
#es1370: enabled=1, wavemode=1

#=======================================================================
# ne2k: NE2000 compatible ethernet adapter
#
# Format:
# ne2k: enabled=1, ioaddr=IOADDR, irq=IRQ, mac=MACADDR, ethmod=MODULE,
#       ethdev=DEVICE, script=SCRIPT, bootrom=BOOTROM
#
# IOADDR, IRQ: You probably won't need to change ioaddr and irq, unless there
# are IRQ conflicts. These arguments are ignored when assign the ne2k to a
# PCI slot.
#
# MAC: The MAC address MUST NOT match the address of any machine on the net.
# Also, the first byte must be an even number (bit 0 set means a multicast
# address), and you cannot use ff:ff:ff:ff:ff:ff because that's the broadcast
# address.  For the ethertap module, you must use fe:fd:00:00:00:01.  There may
# be other restrictions too.  To be safe, just use the b0:c4... address.
#
# ETHDEV: The ethdev value is the name of the network interface on your host
# platform.  On UNIX machines, you can get the name by running ifconfig.  On
# Windows machines, you must run niclist to get the name of the ethdev.
# Niclist source code is in misc/niclist.c and it is included in Windows 
# binary releases.
#
# SCRIPT: The script value is optional, and is the name of a script that 
# is executed after bochs initialize the network interface. You can use 
# this script to configure this network interface, or enable masquerading.
# This is mainly useful for the tun/tap devices that only exist during
# Bochs execution. The network interface name is supplied to the script
# as first parameter. The 'slirp' module uses this parameter to specify
# a config file for setting up an alternative IP configuration or additional
# features.
#
# BOOTROM: The bootrom value is optional, and is the name of the ROM image
# to load. Note that this feature is only implemented for the PCI version of
# the NE2000.
#
# If you don't want to make connections to any physical networks,
# you can use the following 'ethmod's to simulate a virtual network.
#   null: All packets are discarded, but logged to a few files.
#   vde:  Virtual Distributed Ethernet
#   vnet: ARP, ICMP-echo(ping), DHCP and read/write TFTP are simulated.
#         The virtual host uses 192.168.10.1.
#         DHCP assigns 192.168.10.2 to the guest.
#         TFTP uses the 'ethdev' value for the root directory and doesn't
#         overwrite files.
#
#=======================================================================
# ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=fbsd, ethdev=en0 #macosx
# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=fbsd, ethdev=xl0
# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=linux, ethdev=eth0
# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=win32, ethdev=MYCARD
# ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=tap, ethdev=tap0
# ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=tuntap, ethdev=/dev/net/tun0, script=./tunconfig
# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=null, ethdev=eth0
# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=vde, ethdev="/tmp/vde.ctl"
# ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=vnet, ethdev="c:/temp"
# ne2k: mac=b0:c4:20:00:00:01, ethmod=slirp, script=slirp.conf, bootrom=ne2k_pci.rom

#=======================================================================
# pcipnic: Bochs/Etherboot pseudo-NIC
#
# Format:
# pcipnic: enabled=1, mac=MACADDR, ethmod=MODULE, ethdev=DEVICE, script=SCRIPT,
#          bootrom=BOOTROM
#
# The pseudo-NIC accepts the same syntax (for mac, ethmod, ethdev, script,
# bootrom) and supports the same networking modules as the NE2000 adapter.
#=======================================================================
#pcipnic: enabled=1, mac=b0:c4:20:00:00:00, ethmod=vnet

#=======================================================================
# e1000: Intel(R) 82540EM Gigabit Ethernet adapter
#
# Format:
# e1000: enabled=1, mac=MACADDR, ethmod=MODULE, ethdev=DEVICE, script=SCRIPT
#        bootrom=BOOTROM
#
# The E1000 accepts the same syntax (for mac, ethmod, ethdev, script, bootrom)
# and supports the same networking modules as the NE2000 adapter.
#=======================================================================
#e1000: enabled=1, mac=52:54:00:12:34:56, ethmod=slirp, script=slirp.conf

#=======================================================================
# USB_UHCI:
# This option controls the presence of the USB root hub which is a part
# of the i440FX PCI chipset. With the portX parameter you can connect devices
# to the hub (currently supported: 'mouse', 'tablet', 'keypad', 'disk', 'cdrom'
# 'hub' and 'printer').
#
# If you connect the mouse or tablet to one of the ports, Bochs forwards the
# mouse movement data to the USB device instead of the selected mouse type.
# When connecting the keypad to one of the ports, Bochs forwards the input of
# the numeric keypad to the USB device instead of the PS/2 keyboard.
#
# To connect a 'flat' mode image as an USB hardisk you can use the 'disk' device
# with the path to the image separated with a colon. To use other disk image modes
# similar to ATA disks the syntax 'disk:mode:filename' must be used (see below).
#
# To emulate an USB cdrom you can use the 'cdrom' device name and the path to
# an ISO image or raw device name also separated with a colon. An option to
# insert/eject media is available in the runtime configuration.
#
# The device name 'hub' connects an external hub with max. 8 ports (default: 4)
# to the root hub. To specify the number of ports you have to add the value
# separated with a colon. Connecting devices to the external hub ports is only
# available in the runtime configuration.
#
# The device 'printer' emulates the HP Deskjet 920C printer. The PCL data is
# sent to a file specified in bochsrc.txt. The current code appends the PCL
# code to the file if the file already existed. It would probably be nice to
# overwrite the file instead, asking user first.
#
# The optionsX parameter can be used to assign specific options to the device
# connected to the corresponding USB port. Currently this feature is used to
# set the speed reported by device ('low', 'full', 'high' or 'super'). The
# availabe speed choices depend on both HC and device. For the USB 'disk' device
# the optionsX parameter can be used to specify an alternative redolog file
# (journal) of some image modes. For 'vvfat' mode USB disks the optionsX
# parameter can be used to specify the disk size (range 128M ... 128G). If the
# size is not specified, it defaults to 504M.
#=======================================================================
#usb_uhci: enabled=1
#usb_uhci: enabled=1, port1=mouse, port2=disk:usbstick.img
#usb_uhci: enabled=1, port1=hub:7, port2=disk:growing:usbdisk.img
#usb_uhci: enabled=1, port2=disk:undoable:usbdisk.img, options2=journal:redo.log
#usb_uhci: enabled=1, port2=disk:vvfat:vvfat, options2=speed:full
#usb_uhci: enabled=1, port1=printer:printdata.bin, port2=cdrom:image.iso

#=======================================================================
# USB_OHCI:
# This option controls the presence of the USB OHCI host controller with a
# 2-port hub. The portX parameter accepts the same device types with the same
# syntax as the UHCI controller (see above). The optionsX parameter is also
# available on OHCI.
#=======================================================================
#usb_ohci: enabled=1
#usb_ohci: enabled=1, port1=printer:usbprinter.bin

#=======================================================================
# USB_XHCI:
# This option controls the presence of the experimental USB xHCI host controller
# with a 4-port hub. The portX parameter accepts the same device types with the
# same syntax as the UHCI controller (see above). The optionsX parameter is
# also available on xHCI. NOTE: port 1 and 2 are USB3 and only support
# super-speed devices, but port 3 and 4 are USB2 and support speed settings
# low, full and high.
#=======================================================================
#usb_xhci: enabled=1

#=======================================================================
# PCIDEV:
# PCI host device mapping
#=======================================================================
#pcidev: vendor=0x1234, device=0x5678

#=======================================================================
# GDBSTUB:
# Enable GDB stub. See user documentation for details.
# Default value is enabled=0.
#=======================================================================
#gdbstub: enabled=0, port=1234, text_base=0, data_base=0, bss_base=0

#=======================================================================
# MAGIC_BREAK:
# This enables the "magic breakpoint" feature when using the debugger.
# The useless cpu instruction XCHG BX, BX causes Bochs to enter the
# debugger mode. This might be useful for software development.
#
# Example:
#   magic_break: enabled=1
#=======================================================================
#magic_break: enabled=1

#=======================================================================
# DEBUG_SYMBOLS:
# This loads symbols from the specified file for use in Bochs' internal
# debugger. Symbols are loaded into global context. This is equivalent to
# issuing ldsym debugger command at start up.
#
# Example:
#   debug_symbols: file="kernel.sym"
#   debug_symbols: file="kernel.sym", offset=0x80000000
#=======================================================================
#debug_symbols: file="kernel.sym"

#print_timestamps: enabled=1

#=======================================================================
# PORT_E9_HACK:
# The 0xE9 port doesn't exists in normal ISA architecture. However, we
# define a convention here, to display on the console of the system running
# Bochs anything that is written to it. The idea is to provide debug output
# very early when writing BIOS or OS code for example, without having to
# bother with setting up a serial port or etc. Reading from port 0xE9 will
# will return 0xe9 to let you know if the feature is available.
# Leave this 0 unless you have a reason to use it.
#
# Example:
#   port_e9_hack: enabled=1
#=======================================================================
#port_e9_hack: enabled=1

#=======================================================================
# other stuff
#=======================================================================
#load32bitOSImage: os=nullkernel, path=../kernel.img, iolog=../vga_io.log
#load32bitOSImage: os=linux, path=../linux.img, iolog=../vga_io.log, initrd=../initrd.img

#=======================================================================
# fullscreen: ONLY IMPLEMENTED ON AMIGA
#             Request that Bochs occupy the entire screen instead of a
#             window.
#
# Examples:
#   fullscreen: enabled=0
#   fullscreen: enabled=1
#=======================================================================
#fullscreen: enabled=0
#screenmode: name="sample"

#=======================================================================
# USER_PLUGIN:
# Load user-defined plugin. This option is available only if Bochs is
# compiled with plugin support. Maximum 8 different plugins are supported.
# See the example in the Bochs sources how to write a plugin device.
#=======================================================================
#user_plugin: name=testdev

#=======================================================================
# for Macintosh, use the style of pathnames in the following
# examples.
#
# vgaromimage: :bios:VGABIOS-elpin-2.40
# romimage: file=:bios:BIOS-bochs-latest, address=0xf0000
# floppya: 1_44=[fd:], status=inserted
#=======================================================================

#=======================================================================
# MEGS
# Set the number of Megabytes of physical memory you want to emulate. 
# The default is 32MB, most OS's won't need more than that.
# The maximum amount of memory supported is 2048Mb.
# The 'MEGS' option is deprecated. Use 'MEMORY' option instead.
#=======================================================================
#megs: 256
#megs: 128
#megs: 64
#megs: 32
#megs: 16
#megs: 8

* 制作运行脚本 run-debug.bat
cd "D:\prj\nasm_prj\boot\boot_dispmsg\test_on_bochs"
"C:\Program Files (x86)\Bochs-2.6.8\bochsdbg.exe" -q -f bochsrc-sample.bxrc

用bochs调试boot loader

* 启动run_debug.bat

按c键, 让bochs直接跑, 看看效果. 当然是没效果才调试. 被调试的程序,已经是正确的程序。
在调试以前,存在通过栈传递参数时,取参数值位置不对和函数调用完,堆栈不平衡的问题。
通过bochs调试,让我看到了这2个问题,如果直接烧到U盘中,出了问题,让自己猜,真难啊. 还是要用调试器.

关掉run_debug.bat, 再次启动run_debug.bat
* 下物理地址断点到0x7c00, 这是boot loader首次执行的入口点
(0) [0x0000fffffff0] f000:fff0 (unk. ctxt): jmpf 0xf000:e05b          ; ea5be000f0
 pb 0x7c00
 info break
Num Type           Disp Enb Address
  1 pbreakpoint    keep y   0x000000007c00

下物理地址断点的调试命令 : pb ADDR
查看断点列表的调试命令 : info break

按c键, 让bochs直接跑. 直接断在0x7c00处.
先反汇编一下, 看看断点附近的代码
 c
(0) Breakpoint 1, 0x0000000000007c00 in ?? ()
Next at t=153227151
(0) [0x000000007c00] 0000:7c00 (unk. ctxt): mov ax, cx                ; 89c8
 u
00007c00: (                    ): mov ax, cx                ; 89c8
 u 0x7c00 0x7c20
00007c00: (                    ): mov ax, cx                ; 89c8
00007c02: (                    ): mov ds, ax                ; 8ed8
00007c04: (                    ): mov es, ax                ; 8ec0
00007c06: (                    ): call .+100                ; e86400
00007c09: (                    ): nop                       ; 90
00007c0a: (                    ): push 0x0000               ; 6a00
00007c0c: (                    ): push 0x0000               ; 6a00
00007c0e: (                    ): push 0x0000               ; 6a00
00007c10: (                    ): call .+113                ; e87100
00007c13: (                    ): pop ax                    ; 58
00007c14: (                    ): pop ax                    ; 58
00007c15: (                    ): pop ax                    ; 58
00007c16: (                    ): call .+62                 ; e83e00
00007c19: (                    ): push 0x0001               ; 6a01
00007c1b: (                    ): push 0x0001               ; 6a01
00007c1d: (                    ): push 0x0000               ; 6a00
00007c1f: (                    ): call .+98                 ; e86200


u 命令 : 查看当前ip对应的汇编指令
u ADDR_BEGIN ADDR_END 命令 : 查看制定地址之间的汇编指令

bochs是逐条汇编指令执行的,如果我们调用了第三方的代码,会进入第三方的汇编代码里面,很久都出不来.
我的选择是在合适的地方下断点,过了自己关心的地方,就按c键, 直接执行到预先设置的断点处. e.g. 在调用自己的函数语句和下一条后面分别下断点.
这样按C键,可以在调用处停一下,在函数里面,过了我们关心的地方,按C键可以直接返回函数调用后的语句.

现在来调试0x7c10处的 .+113函数, 在该函数调用的开始和结束处,分别下断点.
 pb 0x7c10
 pb 0x7c13
 info break
Num Type           Disp Enb Address
  1 pbreakpoint    keep y   0x000000007c00
  2 pbreakpoint    keep y   0x000000007c10
  3 pbreakpoint    keep y   0x000000007c13
按C键,跑起来。

s 1 命令,单步. 输入单步命令后, 如果下次还想单步,直接按回车,执行上一次的命令 s 1.
 c
(0) Breakpoint 2, 0x0000000000007c10 in ?? ()
Next at t=153229523
(0) [0x000000007c10] 0000:7c10 (unk. ctxt): call .+113 (0x00007c84)   ; e87100
 s 1
Next at t=153229524
(0) [0x000000007c84] 0000:7c84 (unk. ctxt): mov bp, sp                ; 89e5
 s 1
Next at t=153229525
(0) [0x000000007c86] 0000:7c86 (unk. ctxt): push bp                   ; 55
 s 1
Next at t=153229526
(0) [0x000000007c87] 0000:7c87 (unk. ctxt): mov ax, word ptr ss:[bp+2] ; 8b4602
到了这,要看看从堆栈中取的入参对不对.
先 print-stack N 看堆栈参数, N代表要看从栈顶开始的几个堆栈值.
 print-stack 8
Stack address size 2
 | STACK 0xffcc [0xffce] => sp 保存到 bp的值, bp入栈
 | STACK 0xffce [0x7c13] => 函数返回地址
 | STACK 0xffd0 [0x0000] => 参数左1
 | STACK 0xffd2 [0x0000] => 参数左2
 | STACK 0xffd4 [0x0000] => 参数左3
 | STACK 0xffd6 [0x96d2]
 | STACK 0xffd8 [0xf000]
 | STACK 0xffda [0x0001]
用r命令看寄存器的值, 主要关心bp值. 因为入参是通过栈传递过来,现在要从栈内取来,在函数内用.
 
 r
rax: 00000000_00000600 rcx: 00000000_00090000
rdx: 00000000_0000184f rbx: 00000000_00001700
rsp: 00000000_0000ffcc rbp: 00000000_0000ffce
rsi: 00000000_000e0000 rdi: 00000000_0000ffac
r8 : 00000000_00000000 r9 : 00000000_00000000
r10: 00000000_00000000 r11: 00000000_00000000
r12: 00000000_00000000 r13: 00000000_00000000
r14: 00000000_00000000 r15: 00000000_00000000
rip: 00000000_00007c87
eflags 0x00000082: id vip vif ac vm rf nt IOPL=0 of df if tf SF zf af pf cf
看到bp = 0xffce, 再对照打印出的堆栈, 看到0xffce处对应的是函数返回地址.
到这,我遇到的函数参数从堆栈内取,就搞定了。
现在,我知道 [bp+2] 是参数左1, [bp+4] 是参数左2,[bp+6] 是参数左3.

按C键,返回到函数调用完成的语句 0x7c13. 
 c
(0) Breakpoint 3, 0x0000000000007c13 in ?? ()
Next at t=153229805
(0) [0x000000007c13] 0000:7c13 (unk. ctxt): pop ax                    ; 58
 print-stack 8
Stack address size 2
 | STACK 0xffd0 [0x0000]
 | STACK 0xffd2 [0x0000]
 | STACK 0xffd4 [0x0000]
 | STACK 0xffd6 [0x96d2]
 | STACK 0xffd8 [0xf000]
 | STACK 0xffda [0x0001]
 | STACK 0xffdc [0x0000]
 | STACK 0xffde [0x0000]
 和在函数入口处打印出的栈内容进行比对,可以看到压入的3个参数都在栈顶.
这是可以用sp + 6进行堆栈平衡。 我上午调试时,想的很挫. pop了3次~

到此,我遇到的2个问题(函数内取入参和函数调用完的堆栈平衡)就搞定了.
bochs总共10几个调试命令,如果以后遇到问题再查bochs自带的帮助.
bochs调试命令做的很人性化,只要用过任一款调试器,都很容易上手bochs调试器.

实验用的nasm代码和list文件

     1                                  ; @file boot_disp_string_by_call.asm
     2                                  ; @brief 启动后显示一些信息
     3                                  ; @note 编译命令行 
     4                                  ; cd D:\prj\nasm_prj\boot\boot_dispmsg
     5                                  ; d:
     6                                  ; C:\nasm\nasm.exe -f bin -d UBOOT boot_disp_string_by_call.asm -o boot_2015_0919_2216  -l boot_2015_0919_2216.list
     7                                  ; @note 将boot_2015_0919_2216写U盘0扇区
     8                                  ; @note 效果 : 显示一句话
     9                                  
    10                                  ; /// 栈上的参数
    11                                  ; /// 进入函数后,栈上保存的参数为: 
    12                                  ; /// [sp + 0]返回地址
    13                                  ; /// [sp + 2]参数1(左1)
    14                                  ; /// [sp + 4]参数2(左2)
    15                                  ; /// [sp + 6]参数3(左3)
    16                                  ; /// | STACK 0xffce [0x7c13]
    17                                  ; /// | STACK 0xffd0 [0x0000]
    18                                  ; /// | STACK 0xffd2 [0x0000]
    19                                  ; /// | STACK 0xffd4 [0x0000]
    20                                  ; /// 此时 sp 指向函数返回地址
    21                                  ; /// 函数入口保存现场
    22                                  ; /// mov bp, sp
    23                                  ; /// push bp
    24                                  ; /// 此时 bp 指向函数返回地址
    25                                  ; /// 所以在函数中使用入参时, 
    26                                  ; /// [bp + 0] 是函数返回地址
    27                                  ; /// [bp + 2]参数1(左1)
    28                                  ; /// [bp + 4]参数2(左2)
    29                                  ; /// [bp + 8]参数3(左3) ...
    30                                  %define STACK_PARAM_1 [bp + 2]
    31                                  %define STACK_PARAM_2 [bp + 4] ; ///<  对于16位汇编, offset是2,而不是4
    32                                  %define STACK_PARAM_3 [bp + 6]
    33                                  %define STACK_PARAM_4 [bp + 8]
    34                                  %define STACK_PARAM_5 [bp + 10]
    35                                  %define STACK_PARAM_6 [bp + 12]
    36                                  %define STACK_PARAM_7 [bp + 14]
    37                                  %define STACK_PARAM_8 [bp + 16]
    38                                  %define STACK_PARAM_9 [bp + 18]
    39                                  
    40                                  %define PAGE_0 0 ; ///< 显存页0
    41                                  %define COLOR_BG_READ_FG_WHITE 47h ; ///< 红底白字
    42                                  %define CHAR_TO_DISP '=' ; ///< 要显示的字符内容
    43                                  %define CHAR_COUNT 40 ; ///< 字符个数, 通过实验, 果真能看到一行是80个字符
    44                                  
    45                                  %define CURSOR_X_0 0
    46                                  %define CURSOR_Y_0 0
    47                                  
    48                                  %define CURSOR_X_1 1
    49                                  %define CURSOR_Y_1 1
    50                                  
    51                                  %define CURSOR_X_2 2
    52                                  %define CURSOR_Y_2 2
    53                                  
    54                                  %define CURSOR_X_3 3
    55                                  %define CURSOR_Y_3 3
    56                                  
    57                                  %define CURSOR_X_4 4
    58                                  %define CURSOR_Y_4 4
    59                                  
    60                                  %define CURSOR_X_5 5
    61                                  %define CURSOR_Y_5 5
    62                                  
    63                                  	org 0h
    64                                  	
    65 00000000 89C8                    	mov ax, cx
    66 00000002 8ED8                    	mov ds, ax
    67 00000004 8EC0                    	mov es, ax
    68                                  	
    69 00000006 E86400                  	call clear_screen ; ///< 清屏
    70 00000009 90                      	nop
    71                                  	
    72                                  	; /// 将入参从右往左入栈
    73                                  	; /// 在调试模式下,单步vs2010中编写的程序反汇编,是这样的
    74                                  	
    75                                  	; /// 设置光标到(0,0)
    76 0000000A 6A00                    	push CURSOR_Y_0 ; ///< STACK_PARAM_3
    77 0000000C 6A00                    	push CURSOR_X_0 ; ///< STACK_PARAM_2
    78 0000000E 6A00                    	push PAGE_0 ; ///< STACK_PARAM_1
    79 00000010 E87100                  	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
    80 00000013 58                      	pop ax;///< 堆栈平衡
    81 00000014 58                      	pop ax
    82 00000015 58                      	pop ax
    83                                  	
    84 00000016 E83E00                  	call print_line40
    85                                  	
    86                                  	; /// 设置光标到(1,1)
    87 00000019 6A01                    	push CURSOR_Y_1
    88 0000001B 6A01                    	push CURSOR_X_1
    89 0000001D 6A00                    	push PAGE_0
    90 0000001F E86200                  	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
    91 00000022 58                      	pop ax;///< 堆栈平衡
    92 00000023 58                      	pop ax
    93 00000024 58                      	pop ax
    94                                  	
    95 00000025 E82F00                  	call print_line40
    96                                  	
    97                                  	; /// 设置光标到(2,2)
    98 00000028 6A02                    	push CURSOR_Y_2
    99 0000002A 6A02                    	push CURSOR_X_2
   100 0000002C 6A00                    	push PAGE_0
   101 0000002E E85300                  	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
   102 00000031 58                      	pop ax;///< 堆栈平衡
   103 00000032 58                      	pop ax
   104 00000033 58                      	pop ax
   105                                  	
   106 00000034 E82000                  	call print_line40
   107                                  
   108                                  	; /// 设置光标到(3,3)
   109 00000037 6A03                    	push CURSOR_Y_3
   110 00000039 6A03                    	push CURSOR_X_3
   111 0000003B 6A00                    	push PAGE_0
   112 0000003D E84400                  	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
   113 00000040 58                      	pop ax;///< 堆栈平衡
   114 00000041 58                      	pop ax
   115 00000042 58                      	pop ax
   116                                  	
   117 00000043 E81100                  	call print_line40
   118                                  
   119                                  	; /// >>
   120 00000046 6A04                    	push CURSOR_Y_4
   121 00000048 6A04                    	push CURSOR_X_4
   122 0000004A 6A00                    	push PAGE_0
   123 0000004C E83500                  	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
   124 0000004F 58                      	pop ax;///< 堆栈平衡
   125 00000050 58                      	pop ax
   126 00000051 58                      	pop ax
   127                                  	
   128 00000052 E80200                  	call print_line40
   129                                  
   130                                  	; /// >>
   131 00000055 EBFE                    	jmp $ ; 死循环
   132                                  	
   133                                  print_line40:
   134 00000057 89E5                    	mov bp, sp
   135 00000059 55                      	push bp
   136                                  
   137 0000005A 6A00                    	push PAGE_0 ; ///< STACK_PARAM_1
   138 0000005C 6A47                    	push COLOR_BG_READ_FG_WHITE ; ///< STACK_PARAM_2
   139 0000005E 6A3D                    	push CHAR_TO_DISP ; ///< STACK_PARAM_3
   140 00000060 6A28                    	push CHAR_COUNT ; ///< STACK_PARAM_4
   141 00000062 E83B00                  	call disp_char_repeat ; 调用函数-显示字符串
   142 00000065 58                      	pop ax;///< 堆栈平衡
   143 00000066 58                      	pop ax
   144 00000067 58                      	pop ax
   145 00000068 58                      	pop ax
   146                                  	
   147 00000069 5D                      	pop bp
   148 0000006A 89EC                    	mov sp, bp
   149 0000006C C3                      	ret
   150                                  
   151                                  ; /// 清屏
   152                                  clear_screen:
   153 0000006D 89E5                    	mov bp, sp
   154 0000006F 55                      	push bp
   155                                  	
   156                                  ;	(7)、功能 06H 和 07H
   157                                  ;	功能描述:初始化屏幕或滚屏
   158                                  ;	入口参数:AH=06H——向上滚屏,07H——向下滚屏
   159                                  ;	AL=滚动行数(0——清窗口)
   160                                  ;	BH=空白区域的缺省属性
   161                                  ;	(CH、CL)=窗口的左上角位置(Y 坐标,X 坐标)
   162                                  ;	(DH、DL)=窗口的右下角位置(Y 坐标,X 坐标)
   163                                  ;	出口参数:无
   164                                  
   165 00000070 B406                    	mov ah, 6h
   166 00000072 B000                    	mov al, 0
   167 00000074 B717                    	mov bh, 17h ; ///< 蓝底白字,光标闪烁
   168 00000076 B100                    	mov cl, 0
   169 00000078 B500                    	mov ch, 0
   170 0000007A B24F                    	mov dl, 79
   171 0000007C B618                    	mov dh, 24
   172 0000007E CD10                    	int 10h
   173                                  	
   174 00000080 5D                      	pop bp
   175 00000081 89EC                    	mov sp, bp
   176 00000083 C3                      	ret
   177                                  
   178                                  ; /// 设置光标位置	
   179                                  set_cursor:
   180 00000084 89E5                    	mov bp, sp
   181 00000086 55                      	push bp
   182                                  	
   183                                  ;	push CURSOR_Y_0 ; ///< STACK_PARAM_3
   184                                  ;	push CURSOR_X_0 ; ///< STACK_PARAM_2
   185                                  ;	push PAGE_0 ; ///< STACK_PARAM_1
   186                                  
   187 00000087 8B4602                  	mov ax, STACK_PARAM_1
   188 0000008A 88C7                    	mov bh, al ; ///< display page number
   189                                  	
   190 0000008C 8B4604                  	mov ax, STACK_PARAM_2
   191 0000008F 88C2                    	mov dl, al ; ///< cursor column, CURSOR_X_N
   192                                  
   193 00000091 8B4606                  	mov ax, STACK_PARAM_3
   194 00000094 88C6                    	mov dh, al ; ///< cursor row, CURSOR_Y_N
   195                                  	
   196 00000096 B402                    	mov ah, 2
   197 00000098 B000                    	mov al, 0
   198 0000009A CD10                    	int 10h
   199                                  	
   200 0000009C 5D                      	pop bp
   201 0000009D 89EC                    	mov sp, bp
   202 0000009F C3                      	ret
   203                                  	
   204                                  ; /// 重复显示字符
   205                                  disp_char_repeat:
   206 000000A0 89E5                    	mov bp, sp
   207 000000A2 55                      	push bp
   208                                  	
   209                                  ;	(9)、功能 09H
   210                                  ;	功能描述:在当前光标处按指定属性显示字符
   211                                  ;	入口参数:AH=09H
   212                                  ;	AL=字符
   213                                  ;	BH=显示页码
   214                                  ;	BL=属性(文本模式)或颜色(图形模式)
   215                                  ;	CX=重复输出字符的次数
   216                                  ;	出口参数:无
   217                                  
   218                                  ;	push PAGE_0 ; ///< STACK_PARAM_4
   219                                  ;	push COLOR_BG_READ_FG_WHITE ; ///< STACK_PARAM_3
   220                                  ;	push CHAR_TO_DISP ; ///< STACK_PARAM_2
   221                                  ;	push CHAR_COUNT ; ///< STACK_PARAM_1
   222                                  
   223 000000A3 8B4608                  	mov ax, STACK_PARAM_4
   224 000000A6 88C7                    	mov bh, al ; no.0 page 
   225                                  	
   226 000000A8 8B4606                  	mov ax, STACK_PARAM_3
   227 000000AB 88C3                    	mov bl, al ; char color, 红底白字
   228                                  
   229 000000AD 8B4602                  	mov ax, STACK_PARAM_1
   230 000000B0 89C1                    	mov cx, ax ; char count
   231                                  	
   232 000000B2 8B4604                  	mov ax, STACK_PARAM_2 ; char content
   233 000000B5 B409                    	mov ah, 09h ; 在当前光标处按指定属性显示字符
   234 000000B7 CD10                    	int 10h
   235                                  	
   236 000000B9 5D                      	pop bp
   237 000000BA 89EC                    	mov sp, bp
   238 000000BC C3                      	ret
   239                                  	
   240                                  ; /// 做个标记,在拷贝到U盘的前后,都可以确认是否为自己最新的修改
   241 000000BD 6275696C64206F6E20-     str_build_time db 'build on 2015_0919_1003', 0
   242 000000C6 323031355F30393139-
   243 000000CF 5F3130303300       
   244                                  len_str_build_time equ ($-str_build_time) ; ///< 串长度
   245                                  	
   246 000000D5 00                times 510-($-$$) db 0 ; 用0填充剩余空间,使该段二进制代码正好为512字节
   247 000001FE 55AA                    dw 0aa55h ; 结束标记


; @file boot_disp_string_by_call.asm
; @brief 启动后显示一些信息
; @note 编译命令行 
; cd D:\prj\nasm_prj\boot\boot_dispmsg
; d:
; C:\nasm\nasm.exe -f bin -d UBOOT boot_disp_string_by_call.asm -o boot_2015_0919_2216  -l boot_2015_0919_2216.list
; @note 将boot_2015_0919_2216写U盘0扇区
; @note 效果 : 显示一句话

; /// 栈上的参数
; /// 进入函数后,栈上保存的参数为: 
; /// [sp + 0]返回地址
; /// [sp + 2]参数1(左1)
; /// [sp + 4]参数2(左2)
; /// [sp + 6]参数3(左3)
; /// | STACK 0xffce [0x7c13]
; /// | STACK 0xffd0 [0x0000]
; /// | STACK 0xffd2 [0x0000]
; /// | STACK 0xffd4 [0x0000]
; /// 此时 sp 指向函数返回地址
; /// 函数入口保存现场
; /// mov bp, sp
; /// push bp
; /// 此时 bp 指向函数返回地址
; /// 所以在函数中使用入参时, 
; /// [bp + 0] 是函数返回地址
; /// [bp + 2]参数1(左1)
; /// [bp + 4]参数2(左2)
; /// [bp + 8]参数3(左3) ...
%define STACK_PARAM_1 [bp + 2]
%define STACK_PARAM_2 [bp + 4] ; ///<  对于16位汇编, offset是2,而不是4
%define STACK_PARAM_3 [bp + 6]
%define STACK_PARAM_4 [bp + 8]
%define STACK_PARAM_5 [bp + 10]
%define STACK_PARAM_6 [bp + 12]
%define STACK_PARAM_7 [bp + 14]
%define STACK_PARAM_8 [bp + 16]
%define STACK_PARAM_9 [bp + 18]

%define PAGE_0 0 ; ///< 显存页0
%define COLOR_BG_READ_FG_WHITE 47h ; ///< 红底白字
%define CHAR_TO_DISP '=' ; ///< 要显示的字符内容
%define CHAR_COUNT 40 ; ///< 字符个数, 通过实验, 果真能看到一行是80个字符

%define CURSOR_X_0 0
%define CURSOR_Y_0 0

%define CURSOR_X_1 1
%define CURSOR_Y_1 1

%define CURSOR_X_2 2
%define CURSOR_Y_2 2

%define CURSOR_X_3 3
%define CURSOR_Y_3 3

%define CURSOR_X_4 4
%define CURSOR_Y_4 4

%define CURSOR_X_5 5
%define CURSOR_Y_5 5

	org 0h
	
	mov ax, cx
	mov ds, ax
	mov es, ax
	
	call clear_screen ; ///< 清屏
	nop
	
	; /// 将入参从右往左入栈
	; /// 在调试模式下,单步vs2010中编写的程序反汇编,是这样的
	
	; /// 设置光标到(0,0)
	push CURSOR_Y_0 ; ///< STACK_PARAM_3
	push CURSOR_X_0 ; ///< STACK_PARAM_2
	push PAGE_0 ; ///< STACK_PARAM_1
	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
	pop ax;///< 堆栈平衡
	pop ax
	pop ax
	
	call print_line40
	
	; /// 设置光标到(1,1)
	push CURSOR_Y_1
	push CURSOR_X_1
	push PAGE_0
	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
	pop ax;///< 堆栈平衡
	pop ax
	pop ax
	
	call print_line40
	
	; /// 设置光标到(2,2)
	push CURSOR_Y_2
	push CURSOR_X_2
	push PAGE_0
	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
	pop ax;///< 堆栈平衡
	pop ax
	pop ax
	
	call print_line40

	; /// 设置光标到(3,3)
	push CURSOR_Y_3
	push CURSOR_X_3
	push PAGE_0
	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
	pop ax;///< 堆栈平衡
	pop ax
	pop ax
	
	call print_line40

	; /// >>
	push CURSOR_Y_4
	push CURSOR_X_4
	push PAGE_0
	call set_cursor ; ///< set_cursor(PAGE_0, CURSOR_X_1, CURSOR_Y_2)
	pop ax;///< 堆栈平衡
	pop ax
	pop ax
	
	call print_line40

	; /// >>
	jmp $ ; 死循环
	
print_line40:
	mov bp, sp
	push bp

	push PAGE_0 ; ///< STACK_PARAM_1
	push COLOR_BG_READ_FG_WHITE ; ///< STACK_PARAM_2
	push CHAR_TO_DISP ; ///< STACK_PARAM_3
	push CHAR_COUNT ; ///< STACK_PARAM_4
	call disp_char_repeat ; 调用函数-显示字符串
	pop ax;///< 堆栈平衡
	pop ax
	pop ax
	pop ax
	
	pop bp
	mov sp, bp
	ret

; /// 清屏
clear_screen:
	mov bp, sp
	push bp
	
;	(7)、功能 06H 和 07H
;	功能描述:初始化屏幕或滚屏
;	入口参数:AH=06H——向上滚屏,07H——向下滚屏
;	AL=滚动行数(0——清窗口)
;	BH=空白区域的缺省属性
;	(CH、CL)=窗口的左上角位置(Y 坐标,X 坐标)
;	(DH、DL)=窗口的右下角位置(Y 坐标,X 坐标)
;	出口参数:无

	mov ah, 6h
	mov al, 0
	mov bh, 17h ; ///< 蓝底白字,光标闪烁
	mov cl, 0
	mov ch, 0
	mov dl, 79
	mov dh, 24
	int 10h
	
	pop bp
	mov sp, bp
	ret

; /// 设置光标位置	
set_cursor:
	mov bp, sp
	push bp
	
;	push CURSOR_Y_0 ; ///< STACK_PARAM_3
;	push CURSOR_X_0 ; ///< STACK_PARAM_2
;	push PAGE_0 ; ///< STACK_PARAM_1

	mov ax, STACK_PARAM_1
	mov bh, al ; ///< display page number
	
	mov ax, STACK_PARAM_2
	mov dl, al ; ///< cursor column, CURSOR_X_N

	mov ax, STACK_PARAM_3
	mov dh, al ; ///< cursor row, CURSOR_Y_N
	
	mov ah, 2
	mov al, 0
	int 10h
	
	pop bp
	mov sp, bp
	ret
	
; /// 重复显示字符
disp_char_repeat:
	mov bp, sp
	push bp
	
;	(9)、功能 09H
;	功能描述:在当前光标处按指定属性显示字符
;	入口参数:AH=09H
;	AL=字符
;	BH=显示页码
;	BL=属性(文本模式)或颜色(图形模式)
;	CX=重复输出字符的次数
;	出口参数:无

;	push PAGE_0 ; ///< STACK_PARAM_4
;	push COLOR_BG_READ_FG_WHITE ; ///< STACK_PARAM_3
;	push CHAR_TO_DISP ; ///< STACK_PARAM_2
;	push CHAR_COUNT ; ///< STACK_PARAM_1

	mov ax, STACK_PARAM_4
	mov bh, al ; no.0 page 
	
	mov ax, STACK_PARAM_3
	mov bl, al ; char color, 红底白字

	mov ax, STACK_PARAM_1
	mov cx, ax ; char count
	
	mov ax, STACK_PARAM_2 ; char content
	mov ah, 09h ; 在当前光标处按指定属性显示字符
	int 10h
	
	pop bp
	mov sp, bp
	ret
	
; /// 做个标记,在拷贝到U盘的前后,都可以确认是否为自己最新的修改
str_build_time db 'build on 2015_0919_1003', 0
len_str_build_time equ ($-str_build_time) ; ///< 串长度
	
times 510-($-$$) db 0 ; 用0填充剩余空间,使该段二进制代码正好为512字节
dw 0aa55h ; 结束标记


你可能感兴趣的:(nasm : use bochs debug boot loader)