IT经典面试题-逻辑题(附参考答案)

 标?的我不明白,求大神解惑

  • 周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?
  • 设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。
  • ?三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
  • 小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。
    所以黄在林没死的情况下必打林,否则自己必死。
    小李经过计算比较(过程略),会决定自己先打小林。
    于是经计算,小李有873/2600≈33.6%的生机;
    小黄有109/260≈41.9%的生机;
    小林有24.5%的生机。
    哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁;
    小黄一如既往先打林,小林还是先干掉黄,冤家路窄啊!
    最后李,黄,林存活率约38:27:35; 菜鸟活下来抱得美人归的几率大。
    李先放一空枪(如果合伙干中林,自己最吃亏)黄会选林打一枪(如不打林,自己肯定先玩完了)林会选黄打一枪(毕竟它命中率高)李黄对决0.3:0.280.4可能性李林对决0.3:0.60.6可能性成功率0.73李和黄打林李黄对决0.3:0.40.7*0.4可能性李林对决0.3:0.7*0.6*0.70.7*0.6可能性成功率0.64
  • ?在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖。
  • 要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。也就是说,对于桌面上任意一点,到最近的圆心的距离都小于2,所以,整个桌面可以用n个半径为2的硬币覆盖。 把桌面和硬币的尺度都缩小一倍,那么,长、宽各是原桌面一半的小桌面,就可以用n个半径为1的硬币覆盖。那么,把原来的桌子分割成相等的4块小桌子,那么每块小桌子都可以用n个半径为1的硬币覆盖,因此,整个桌面就可以用4n个半径为1的硬币覆盖。
  • 一个球、一把长度大约是球的直径2/3长度的直尺.你怎样测出球的半径?
  • IT经典面试题-逻辑题(附参考答案)_第1张图片
  • 五个大小相同的一元人民币硬币。要求两两相接触,应该怎么摆?
  • IT经典面试题-逻辑题(附参考答案)_第2张图片
  • 猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4黑桃J、8、4、2、7、3草花K、Q、5、4、6方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话:P先生:我不知道这张牌。Q先生:我知道你不知道这张牌。P先生:现在我知道这张牌了。Q先生:我也知道了。听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。请问:这张牌是什么牌?
  • 方块5
  • ?在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖。
  • 要想让新放的硬币不与原先的硬币重叠,两个硬币的圆心距必须大于直径。也就是说,对于桌面上任意一点,到最近的圆心的距离都小于2,所以,整个桌面可以用n个半径为2的硬币覆盖。 把桌面和硬币的尺度都缩小一倍,那么,长、宽各是原桌面一半的小桌面,就可以用n个半径为1的硬币覆盖。那么,把原来的桌子分割成相等的4块小桌子,那么每块小桌子都可以用n个半径为1的硬币覆盖,因此,整个桌面就可以用4n个半径为1的硬币覆盖。
  • U2合唱团在17分钟 内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。手电筒是不能用丢的方式来传递的。四个人的步行速度各不同,若两人同行则 以较慢者的速度为准。Bono需花1分钟过桥,Edge需花2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥。他们要如何在17分钟内过桥呢?
  • 2+1先过 2
    然后1回来送手电筒 1
    5+10再过 10
    2回来送手电筒 2
    2+1过去 2
    总共2+1+10+2+2=17分钟
  • 芯片测试:有2k块芯片,已知好芯片比坏芯片多.请设计算法从其中找出一片 好芯片,说明你所用的比较次数上限. 其中:好芯片和其它芯片比较时,能正确给出另一块芯片是好还是坏. 坏芯片和其它芯片比较时,会随机的给出好或是坏。
  • 把第一块芯片与其它逐一对比,看看其它芯片对第一块芯片给出的是好是坏,如果给出是好的过半,那么说明这是好芯片,完毕。如果给出的是坏的过半,说明第一块芯片是坏的,那么就要在那些在给出第一块芯片是坏的芯片中,重复上述步骤,直到找到好的芯片为止。
  • 1,11,21,1211,111221,下一个数是什么?
  • 下行是对上一行的解释 所以新的应该是3个1 2个2 1个1 :312211
  • 烧一根不均匀的绳要用一个小时,如何用它来判断半个小时?烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?
  • 一,一根绳子从两头烧,烧完就是半个小时。
    二,一根要一头烧,一根从两头烧,两头烧完的时候(30分),将剩下的一根另一端点着,烧尽就是45分钟。再从两头点燃第三根,烧尽就是1时15分。
  • ?共有三类药,分别重1g,2g,3g,放到若干个瓶子中,现在能确定每个瓶子中只有其中一种药,且每瓶中的药片足够多,能只称一次就知道各个瓶子中都是盛的哪类药吗?如果有4类药呢?5类呢?N类呢(N可数)?如果是共有m个瓶子盛着n类药呢(m,n)为正整数,药的质量各不相同但各种药的质量已知)?你能只称一次就知道每瓶的药是什么吗?
  • 当然是有代价的,称过的药我们就不用了第一个瓶子拿出一片,第二个瓶子拿出四片,第三个拿出十六片...第m个拿出n+1的m-1次方片。把所有这些药片放在一起称重量。
  • 有一个大西瓜,用水果刀平整地切,总共切9刀,最多能切成多少份,最少能切成多少份?主要是过程,结果并不是最重要的
  • 最少10,最多130
    见下表,表中蓝色部分服从2为底的指数函数规律,红色部分的数值均为其左边与左上
    角的两个数之和。
  • IT经典面试题-逻辑题(附参考答案)_第3张图片
  • 一个巨大的圆形水池,周围布满了老鼠洞。猫追老鼠到水池边,老鼠未来得及进洞就掉入水池里。猫继续沿水池边缘企图捉住老鼠(猫不入水)。已知V猫=4V鼠。问老鼠是否有办法摆脱猫的追逐?
  • 第一步:游到水池中心。
    第二步:从水池中心游到距中心R/4处,并始终保持鼠、水池中心、猫在一直线上。
    第三步:沿与中心相反方向的直线游3R/4就可以到达水池边,而猫沿圆周到达那里需要3.14R,所以捉不到老鼠。
    三个阶段如下图所示:
  • IT经典面试题-逻辑题(附参考答案)_第4张图片
  • 两个空心球,大小及重量相同,但材料不同。一个是金,一个是铅。空心球表面图有相同颜色的油漆。现在要求在不破坏表面油漆的条件下用简易方法指出哪个是金的,哪个是铅的。
  • 旋转看速度,金的密度大,质量相同,所以金球的实际体积较小,因为外半径相同,所以金球的内半径较大,所以金球的转动惯量大,在相同的外加力矩之下,金球的角加速度较小,所以转得慢。
  • 有23枚硬币在桌上,10枚正面朝上。假设别人蒙住你的眼睛,而你的手又摸不出硬币的反正面。让你用最好的方法把这些硬币分成两堆,每堆正面朝上的硬币个数相同。
  • 分成10+13两堆, 然后翻转10的那堆。
  • 2+7-2+7全部有火柴根组成,移动其中任何一根,答案要求为30说明:因为书写问题作如下解释,2是由横折横三根组成,7是由横折两根组成
    1, 改变赋值号.比如+,-,=
    2, 注意质数.
    3, 可能把画面颠倒过来.
    4, 然后就可以去考虑更改其他数字更改了
  • 247-217=30
  • 5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。问他们中谁的存活几率最大?
    提示:
    1,他们都是很聪明的人
    2,他们的原则是先求保命,再去多杀人
    3,100颗不必都分完
    4,若有重复的情况,则也算最大或最小,一并处死
  • 第一个人选择17时最优的。它有先动优势。他确实有可能被逼死,后面的2、3、4号也想把1号逼死,但做不到(起码确定性逼死做不到)可以看一下,如果第1个人选择21,他的信息时暴露给第2个人的,那么,1号就将自己暴露在一个非常不利的环境下,2-4号就会选择20,五号就会被迫在1-19中选择,则1、5号处死。所以1号不会这样做,会选择一个更小的数。1号选择一个<20的数后,2号没有动力选择一个偏离很大的数(因为这个游戏偏离大会死),只会选择+1或-1,取决于那个死的概率小一些,再考虑这些的时候,又必须逆向考虑,1号必须考虑2-4号的选择,2号必须考虑3、4号的选择,... ...只有5号没得选择,因为前面是只有连着的两个数(且表示为N,N+1),所以5号必死,他也非常明白这一点,会随机选择一个数,来决定整个游戏的命运,但决定不了他自己的命运。
    下面决定的就是1号会选择一个什么数,他仍然不会选择一个太大或太小的数,因为那样仍然是自己处于不利的地位(2-4号肯定不会留情面的),100/6=16.7(为什么除以6?因为5号会随机选择一个数,对1号来说要尽可能的靠近中央,2-4好也是如此,而且正因为2-4号如此,1号才如此... ...),最终必然是在16、17种选择的问题。对16、17进行概率的计算之后,就得出了3个人选择17,第四个人选择16时,为均衡的状态,第4号虽然选择16不及前三个人选择17生存的机会大,但是若选择17则整个游戏的人必死(包括他自己)!第3号没有动力选择16,因为计算概率可知生存机会不如17。
    所以选择为17、17、17、16、X(1-33随机),1-3号生存机会最大。
  • 一个商人骑一头驴要穿越1000公里长的沙漠,去卖3000根胡萝卜。已知驴一次性可驮1000根胡萝卜,但每走一公里又要吃掉一根胡萝卜。问:商人共可卖出多少胡萝卜?
  • 商人带驴驮1000根胡萝卜,先走250公里,这时,驴已吃250根,放下500根,原地返回,又吃掉250根。商人再带驴驮1000根胡萝卜,走到250公里处,这时,驴已吃250根,再驮上原先放的500根中的250根,继续前行至500公里处,这时,驴又吃250根,放下500根,剩250根返回250公里处,在驮上250公里处剩下的250根返回原地,这时驴又吃250根。商人再带驴驮1000根胡萝卜,走到500公里处,这时,驴已吃500根,再驮上原先放的500根,走出沙漠,驴吃掉500根,还剩500根。
  • 10箱黄金,每箱100块,每块一两。有贪官,把某一箱的每块都磨去一钱。请称一次找到不足量的那个箱子。
  • 第一箱子拿1块,第二箱子拿2块, 第n箱子拿n块,然后放在一起称,看看缺了几钱,缺了n钱就说明是第n个箱子。
  • 有十瓶药,每瓶里都装有100片药(仿佛现在装一百片的少了,都是十片二十片的,不管,咱们就这么来了),其中有八瓶里的药每片重10克,另有两瓶里的药每片重9克。用一个蛮精确的小秤,只称一次,如何找出份量较轻的那两个药瓶?
  • 等同于上一题,但此题有一些变化,与众不同的瓶子有两个,只称一次的话,只能得到两个瓶子所缺的克数的总和,我们必须保证能从总和中唯一地得出两个瓶子的所缺数。第一个瓶可拿出1片,第二个拿2片,第三个拿3片,但第四个不能拿4片,因为如果结果缺了5克的话,你就不知道是缺了2+3还是1+4。所以第四个应拿5片,第五个应拿8片,第n个应拿a(n-1)+a(n-2)片。
  • 有一辆火车以每小时 15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
  • 设总距离为d,总共用时d/(15+20),两车相遇,所以鸟飞了30*d/(15+20)=6d/7
  • 你有两个罐子,每个罐子各有若干红色弹球和蓝色弹球,两个罐子共有50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机从中选取出一个弹球,要使取出的是红球的概率最大,一开始两个罐子应放几个红球,几个蓝球?在你的计划中,得到红球的准确几率是多少?
  • 一个罐子放1红,一个罐子放49红和50蓝,这样得到红球的概率接近3/4。
  • 两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
  • 把大圆剪断拉直。小圆绕大圆圆周一周,就变成从直线的一头滚至另一头。因为直线长就是大圆的周长,是小圆周长的2倍,所以小圆要滚动2圈。 但是现在小圆不是沿直线而是沿大圆滚动,小圆因此还同时作自转,当小圆沿大圆滚动1周回到原出发点时,小圆同时自转1周。当小圆在大圆内部滚动时自转的方向与滚动的转向相反,所以小圆自身转了1周。当小圆在大圆外部滚动时自转的方向与滚动的转向相同,所以小圆自身转了3周。
    这一题非常有迷惑性,小圆在外部时其实是3圈,你可以拿个硬币试试可以把圆看成一根绳子,长绳是短绳的2倍长,假设长绳开始接口在最底下,短绳接口在长绳接口处,然后短绳开始顺时针绕,当短绳接口对着正左时,这时其实才绕了长绳的1/4,转了180+90度,所以绕一圈是270*4=360*3 。同理小圆在内部时是1圈。也可以套用下列公式: 两圆圆心距/转动者半径=转动者切另一圆时的自转数!!
  • 已知: 每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机) 一箱油可供一架飞机绕地球飞半圈,问题:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
  • 需要3架飞机(记为A,B,C),A走完全程。如下图,黑色箭头表示飞行方向,红色箭头表示一架给另一架加油,红色数字表示加油量整个油箱容量的比值。
  • IT经典面试题-逻辑题(附参考答案)_第5张图片
  • 在9个点上画10条直线,要求每条直线上有三个点?
  • IT经典面试题-逻辑题(附参考答案)_第6张图片
  • 在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?
  • 只有两次
    假设时针的角速度是ω(ω=π/6每小时),则分针的角速度为12ω,秒针的角速度为72ω。分针与时针再次重合的时间为t,则有12ωt-ωt=2π,t=12/11小时,换算成时分秒为1小时5分27.3秒,显然秒针不与时针分针重合,同样可以算出其它10次分针与时针重合时秒针都不能与它们重合。只有在正12点和0点时才会重。 证明:将时针视为静止,考察分针,秒针对它的相对速度: 12个小时作为时间单位“1”,“圈/12小时”作为速度单位, 则分针速度为11,秒针速度为719。 由于11与719互质,记12小时/(11*719)为时间单位Δ, 则分针与时针重合当且仅当 t=719kΔ k∈Z 秒针与时针重合当且仅当 t=11jΔ j∈Z 而719与11的最小公倍数为11*719,所以若t=0时三针重合,则下一次三针重合 必然在t=11*719*Δ时,即t=12点。
  • 对一批编号为1~100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关⋯⋯问:最后为关熄状态的灯的编号。
  • 若实际操作求解会相当繁琐。我们知道,就某个亮着的灯而言,如果拨其开关的次数是奇数次,那么,结果它一定是关着的。根据题意可知,号码为N的灯,拨开关的次数等于N的约数的个数,约数个数是奇数,则N一定是平方数。因为10的平方等于100,可知100以内共有10个平方数,即,最后关熄状态的灯共有10盏,编号为1、4、9、16、25、36、49、64、81、100。

 

 

 

 

 

你可能感兴趣的:(督主学习笔记,面试)