Format | Description |
---|---|
xyz | Each line contains [x, y, z], where x, y, z are the 3D coordinates |
xyzn | Each line contains [x, y, z, nx, ny, nz], where nx, ny, nz are the normals |
xyzrgb | Each line contains [x, y, z, r, g, b], where r, g, b are in floats of range [0, 1] |
pts | The first line is an integer representing the number of points. Each subsequent line contains [x, y, z, i, r, g, b], where r, g, b are in uint8 |
ply | See Polygon File Format, the ply file can contain both point cloud and mesh data |
pcd | See Point Cloud Data |
Format | Developer |
---|---|
PLY | a polygon file format, developed at Stanford University by Turk et al |
STL | a file format native to the stereolithography CAD software created by 3D Systems |
OBJ | a geometry definition file format first developed by Wavefront Technologies |
X3D | the ISO standard XML-based file format for representing 3D computer graphics data |
PCD | Point Cloud Library (PCL) |
Header
Vertex List
Face List
(lists of other elements)
ply
format ascii 1.0 { ascii/binary, format version number }
comment made by Greg Turk { comments keyword specified, like all lines }
comment this file is a cube
element vertex 8 { define "vertex" element, 8 of them in file }
property float x { vertex contains float "x" coordinate }
property float y { y coordinate is also a vertex property }
property float z { z coordinate, too }
element face 6 { there are 6 "face" elements in the file }
property list uchar int vertex_index { "vertex_indices" is a list of ints }
end_header { delimits the end of the header }
0 0 0 { start of vertex list }
0 0 1
0 1 1
0 1 0
1 0 0
1 0 1
1 1 1
1 1 0
4 0 1 2 3 { start of face list }
4 7 6 5 4
4 0 4 5 1
4 1 5 6 2
4 2 6 7 3
4 3 7 4 0
ply
format ascii 1.0
comment author: Greg Turk
comment object: another cube
element vertex 8
property float x
property float y
property float z
property uchar red { start of vertex color }
property uchar green
property uchar blue
element face 7
property list uchar int vertex_index { number of vertices for each face }
element edge 5 { five edges in object }
property int vertex1 { index to first vertex of edge }
property int vertex2 { index to second vertex }
property uchar red { start of edge color }
property uchar green
property uchar blue
end_header
0 0 0 255 0 0 { start of vertex list }
0 0 1 255 0 0
0 1 1 255 0 0
0 1 0 255 0 0
1 0 0 0 0 255
1 0 1 0 0 255
1 1 1 0 0 255
1 1 0 0 0 255
3 0 1 2 { start of face list, begin with a triangle }
3 0 2 3 { another triangle }
4 7 6 5 4 { now some quadrilaterals }
4 0 4 5 1
4 1 5 6 2
4 2 6 7 3
4 3 7 4 0
0 1 255 255 255 { start of edge list, begin with white edge }
1 2 255 255 255
2 3 255 255 255
3 0 255 255 255
2 0 0 0 0 { end with a single black line }
# .PCD v.7 - Point Cloud Data file format
VERSION .7 # 版本号 PCV_V7
FIELDS x y z rgb # 每个点包含的数据
SIZE 4 4 4 4 # 每个域的字节数
TYPE F F F F # 每个域的数据类型
COUNT 1 1 1 1 # 每个域的元素个数
WIDTH 213 # 点云集中点的个数
HEIGHT 1 # 表示为无组织的数据集
VIEWPOINT 0 0 0 1 0 0 0
POINTS 213
DATA ascii
0.93773 0.33763 0 4.2108e+06
0.90805 0.35641 0 4.2108e+06
0.81915 0.32 0 4.2108e+06
0.97192 0.278 0 4.2108e+06
0.944 0.29474 0 4.2108e+06
0.98111 0.24247 0 4.2108e+06
0.93655 0.26143 0 4.2108e+06
0.91631 0.27442 0 4.2108e+06
0.81921 0.29315 0 4.2108e+06
0.90701 0.24109 0 4.2108e+06
0.83239 0.23398 0 4.2108e+06
0.99185 0.2116 0 4.2108e+06
0.89264 0.21174 0 4.2108e+06
0.85082 0.21212 0 4.2108e+06
0.81044 0.32222 0 4.2108e+06
0.74459 0.32192 0 4.2108e+06
0.69927 0.32278 0 4.2108e+06
0.8102 0.29315 0 4.2108e+06
0.75504 0.29765 0 4.2108e+06
0.8102 0.24399 0 4.2108e+06
0.74995 0.24723 0 4.2108e+06
0.68049 0.29768 0 4.2108e+06
0.66509 0.29002 0 4.2108e+06
0.69441 0.2526 0 4.2108e+06
0.62807 0.22187 0 4.2108e+06
0.58706 0.32199 0 4.2108e+06
0.52125 0.31955 0 4.2108e+06
0.49351 0.32282 0 4.2108e+06
0.44313 0.32169 0 4.2108e+06
0.58678 0.2929 0 4.2108e+06
0.53436 0.29164 0 4.2108e+06
0.59308 0.24134 0 4.2108e+06
0.5357 0.2444 0 4.2108e+06
0.50043 0.31235 0 4.2108e+06
0.44107 0.29711 0 4.2108e+06
0.50727 0.22193 0 4.2108e+06
0.43957 0.23976 0 4.2108e+06
0.8105 0.21112 0 4.2108e+06
0.73555 0.2114 0 4.2108e+06
0.69907 0.21082 0 4.2108e+06
0.63327 0.21154 0 4.2108e+06
0.59165 0.21201 0 4.2108e+06
0.52477 0.21491 0 4.2108e+06
0.49375 0.21006 0 4.2108e+06
0.4384 0.19632 0 4.2108e+06
0.43425 0.16052 0 4.2108e+06
0.3787 0.32173 0 4.2108e+06
0.33444 0.3216 0 4.2108e+06
0.23815 0.32199 0 4.808e+06
0.3788 0.29315 0 4.2108e+06
0.33058 0.31073 0 4.2108e+06
0.3788 0.24399 0 4.2108e+06
0.30249 0.29189 0 4.2108e+06
0.23492 0.29446 0 4.808e+06
0.29465 0.24399 0 4.2108e+06
0.23514 0.24172 0 4.808e+06
0.18836 0.32277 0 4.808e+06
0.15992 0.32176 0 4.808e+06
0.08642 0.32181 0 4.808e+06
0.039994 0.32283 0 4.808e+06
0.20039 0.31211 0 4.808e+06
0.1417 0.29506 0 4.808e+06
0.20921 0.22332 0 4.808e+06
0.13884 0.24227 0 4.808e+06
0.085123 0.29441 0 4.808e+06
0.048446 0.31279 0 4.808e+06
0.086957 0.24399 0 4.808e+06
0.3788 0.21189 0 4.2108e+06
0.29465 0.19323 0 4.2108e+06
0.23755 0.19348 0 4.808e+06
0.29463 0.16054 0 4.2108e+06
0.23776 0.16054 0 4.808e+06
0.19016 0.21038 0 4.808e+06
0.15704 0.21245 0 4.808e+06
0.08678 0.21169 0 4.808e+06
0.012746 0.32168 0 4.808e+06
-0.075715 0.32095 0 4.808e+06
-0.10622 0.32304 0 4.808e+06
-0.16391 0.32118 0 4.808e+06
0.00088411 0.29487 0 4.808e+06
-0.057568 0.29457 0 4.808e+06
-0.0034333 0.24399 0 4.808e+06
-0.055185 0.24185 0 4.808e+06
-0.10983 0.31352 0 4.808e+06
-0.15082 0.29453 0 4.808e+06
-0.11534 0.22049 0 4.808e+06
-0.15155 0.24381 0 4.808e+06
-0.1912 0.32173 0 4.808e+06
-0.281 0.3185 0 4.808e+06
-0.30791 0.32307 0 4.808e+06
-0.33854 0.32148 0 4.808e+06
-0.21248 0.29805 0 4.808e+06
-0.26372 0.29905 0 4.808e+06
-0.22562 0.24399 0 4.808e+06
-0.25035 0.2371 0 4.808e+06
-0.29941 0.31191 0 4.808e+06
-0.35845 0.2954 0 4.808e+06
-0.29231 0.22236 0 4.808e+06
-0.36101 0.24172 0 4.808e+06
-0.0034393 0.21129 0 4.808e+06
-0.07306 0.21304 0 4.808e+06
-0.10579 0.2099 0 4.808e+06
-0.13642 0.21411 0 4.808e+06
-0.22562 0.19323 0 4.808e+06
-0.24439 0.19799 0 4.808e+06
-0.22591 0.16041 0 4.808e+06
-0.23466 0.16082 0 4.808e+06
-0.3077 0.20998 0 4.808e+06
-0.3413 0.21239 0 4.808e+06
-0.40551 0.32178 0 4.2108e+06
-0.50568 0.3218 0 4.2108e+06
-0.41732 0.30844 0 4.2108e+06
-0.44237 0.28859 0 4.2108e+06
-0.41591 0.22004 0 4.2108e+06
-0.44803 0.24236 0 4.2108e+06
-0.50623 0.29315 0 4.2108e+06
-0.50916 0.24296 0 4.2108e+06
-0.57019 0.22334 0 4.2108e+06
-0.59611 0.32199 0 4.2108e+06
-0.65104 0.32199 0 4.2108e+06
-0.72566 0.32129 0 4.2108e+06
-0.75538 0.32301 0 4.2108e+06
-0.59653 0.29315 0 4.2108e+06
-0.65063 0.29315 0 4.2108e+06
-0.59478 0.24245 0 4.2108e+06
-0.65063 0.24399 0 4.2108e+06
-0.70618 0.29525 0 4.2108e+06
-0.76203 0.31284 0 4.2108e+06
-0.70302 0.24183 0 4.2108e+06
-0.77062 0.22133 0 4.2108e+06
-0.41545 0.21099 0 4.2108e+06
-0.45004 0.19812 0 4.2108e+06
-0.4475 0.1673 0 4.2108e+06
-0.52031 0.21236 0 4.2108e+06
-0.55182 0.21045 0 4.2108e+06
-0.5965 0.21131 0 4.2108e+06
-0.65064 0.2113 0 4.2108e+06
-0.72216 0.21286 0 4.2108e+06
-0.7556 0.20987 0 4.2108e+06
-0.78343 0.31973 0 4.2108e+06
-0.87572 0.32111 0 4.2108e+06
-0.90519 0.32263 0 4.2108e+06
-0.95526 0.34127 0 4.2108e+06
-0.79774 0.29271 0 4.2108e+06
-0.85618 0.29497 0 4.2108e+06
-0.79975 0.24326 0 4.2108e+06
-0.8521 0.24246 0 4.2108e+06
-0.91157 0.31224 0 4.2108e+06
-0.95031 0.29572 0 4.2108e+06
-0.92223 0.2213 0 4.2108e+06
-0.94979 0.24354 0 4.2108e+06
-0.78641 0.21505 0 4.2108e+06
-0.87094 0.21237 0 4.2108e+06
-0.90637 0.20934 0 4.2108e+06
-0.93777 0.21481 0 4.2108e+06
0.22244 -0.0296 0 4.808e+06
0.2704 -0.078167 0 4.808e+06
0.24416 -0.056883 0 4.808e+06
0.27311 -0.10653 0 4.808e+06
0.26172 -0.10653 0 4.808e+06
0.2704 -0.1349 0 4.808e+06
0.24428 -0.15599 0 4.808e+06
0.19017 -0.025297 0 4.808e+06
0.14248 -0.02428 0 4.808e+06
0.19815 -0.037432 0 4.808e+06
0.14248 -0.03515 0 4.808e+06
0.093313 -0.02428 0 4.808e+06
0.044144 -0.02428 0 4.808e+06
0.093313 -0.03515 0 4.808e+06
0.044144 -0.03515 0 4.808e+06
0.21156 -0.17357 0 4.808e+06
0.029114 -0.12594 0 4.2108e+06
0.036583 -0.15619 0 4.2108e+06
0.22446 -0.20514 0 4.808e+06
0.2208 -0.2369 0 4.808e+06
0.2129 -0.208 0 4.808e+06
0.19316 -0.25672 0 4.808e+06
0.14497 -0.27484 0 4.808e+06
0.030167 -0.18748 0 4.2108e+06
0.1021 -0.27453 0 4.808e+06
0.1689 -0.2831 0 4.808e+06
0.13875 -0.28647 0 4.808e+06
0.086993 -0.29568 0 4.808e+06
0.044924 -0.3154 0 4.808e+06
-0.0066125 -0.02428 0 4.808e+06
-0.057362 -0.02428 0 4.808e+06
-0.0066125 -0.03515 0 4.808e+06
-0.057362 -0.03515 0 4.808e+06
-0.10653 -0.02428 0 4.808e+06
-0.15266 -0.025282 0 4.808e+06
-0.10653 -0.03515 0 4.808e+06
-0.16036 -0.037257 0 4.808e+06
0.0083286 -0.1259 0 4.2108e+06
0.0007442 -0.15603 0 4.2108e+06
-0.1741 -0.17381 0 4.808e+06
-0.18502 -0.02954 0 4.808e+06
-0.20707 -0.056403 0 4.808e+06
-0.23348 -0.07764 0 4.808e+06
-0.2244 -0.10653 0 4.808e+06
-0.23604 -0.10652 0 4.808e+06
-0.20734 -0.15641 0 4.808e+06
-0.23348 -0.13542 0 4.808e+06
0.0061083 -0.18729 0 4.2108e+06
-0.066235 -0.27472 0 4.808e+06
-0.17577 -0.20789 0 4.808e+06
-0.10861 -0.27494 0 4.808e+06
-0.15584 -0.25716 0 4.808e+06
-0.0075775 -0.31546 0 4.808e+06
-0.050817 -0.29595 0 4.808e+06
-0.10306 -0.28653 0 4.808e+06
-0.1319 -0.2831 0 4.808e+06
-0.18716 -0.20571 0 4.808e+06
-0.18369 -0.23729 0 4.808e+06
(1)要得到一个直线模型,需要两个点唯一确定一个直线方程。所以第一步随机选择两个点。
(2)通过这两个点,可以计算出这两个点所表示的模型方程y=ax+b。
(3)将所有的数据点套到这个模型中计算误差。
(4)找到所有满足误差阈值的点。
(5)然后我们再重复(1)~(4)这个过程,直到达到一定迭代次数后,选出那个被支持的最多的模型,作为问题的解。如下图所示:
https://blog.csdn.net/pi9nc/article/details/26596519
https://zhuanlan.zhihu.com/p/45532306