- 机器学习入门(五):线性回归—从模型函数到目标函数
米饭超人
从数据反推公式假设我们获得了这样一张表格,上面列举了美国纽约若干程序员职位的年薪:enterimagedescriptionhere大家可以看到,表格中列举了职位、经验、技能、国家和城市几项特征。除了经验一项,其他都是一样的。不同的经验(工作年限),薪水不同。而且看起来,工作年头越多,工资也就越高。那么我们把Experience与Salary抽取出来,用x和y来分别指代它们。enterimaged
- 使用Python进行机器学习入门指南
软考和人工智能学堂
Python开发经验python机器学习开发语言
使用Python进行机器学习入门指南机器学习(MachineLearning)是人工智能(ArtificialIntelligence,AI)的一个重要分支,旨在通过算法和统计模型,使计算机系统能够自动从数据中学习和改进。Python作为机器学习领域的主流编程语言,提供了丰富的库和工具来实现各种机器学习任务。本文将介绍如何使用Python进行机器学习,包括基本概念、常用库以及一个实战项目示例。目录
- 量子机器学习入门:从理论到实践
量子机器学习入门:从理论基石到实践路径元数据框架标题量子机器学习入门:从理论基石到实践路径——连接量子计算与人工智能的未来桥梁关键词量子计算;机器学习;量子算法;量子神经网络;Qiskit;PennyLane;量子变分算法摘要量子机器学习(QuantumMachineLearning,QML)是量子计算与机器学习的交叉领域,通过量子计算的叠加态、纠缠和并行性解决传统机器学习的计算瓶颈(如高维数据处
- Python机器学习入门必看!从原理到实战,手把手教你线性回归模型
小张在编程
python机器学习线性回归
引言在人工智能浪潮席卷全球的今天,机器学习(MachineLearning)早已不再是实验室的“黑科技”——打开购物APP的“猜你喜欢”、输入搜索词后的“相关推荐”、甚至天气预报中的温度预测,背后都有机器学习模型的身影。而在线性回归(LinearRegression)作为机器学习中最基础、最经典的监督学习模型,堪称机器学习的“敲门砖”。本文将从原理到实战,带你彻底掌握这一核心算法。一、机器学习的“
- C#串口通信上位机笔记(modbus协议)
指针刺客
c#笔记开发语言
C#串口通信上位机笔记(modbus协议)提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录C#串口通信上位机笔记(modbus协议)前言一、新建工程二、使用步骤1.引入库2.串口初始化总结前言提示:这里可以添加本文要记录的大概内容:记录自己工作的上位机经验
- Python 数据分析与机器学习入门 (一):环境搭建与核心库概览
程序员阿超的博客
Pythonpython数据分析机器学习入门教程环境搭建AnacondaJupyterNotebook
Python数据分析与机器学习入门(一):环境搭建与核心库概览本文摘要本文是Python数据分析与机器学习入门系列的第一篇,专为初学者设计。文章首先阐明了Python在数据科学领域的优势,然后手把手指导读者如何使用Anaconda搭建一个无痛、专业的开发环境,并介绍了强大的交互式工具JupyterNotebook的基本操作。最后,简要概览了NumPy、Pandas、Scikit-learn等核心库
- Python 数据分析与机器学习入门 (三):Pandas 数据导入与核心操作
程序员阿超的博客
Pythonpython数据分析机器学习PandasDataFrameSeries数据清洗
引言:Pandas是什么,为何如此重要?如果说NumPy是处理原始数值数组的利器,那么Pandas则是驾驭结构化数据的瑞士军刀。在真实世界的数据分析项目中,数据很少是单纯的数字矩阵。它们通常以表格形式存在,包含行和列,每列可能有不同的数据类型(如文本、数字、日期),并且带有描述性的列名和行索引。Pandas正是为高效处理这类数据而生。Pandas构建于NumPy之上,它不仅继承了NumPy的高性能
- Python 人工智能与数据科学实战
gohacker
python人工智能开发语言
#Python人工智能与数据科学实战##机器学习入门###Scikit-learn基础```pythonfromsklearn.datasetsimportload_irisfromsklearn.model_sel
- Nginx 缓存系统 proxy_cache详解
学堂在线
云计算Linux系统nginx缓存运维服务器开源
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言功能特点proxy_cache工作原理示意图配置文件示例参数详尽说明性能优化方案总结前言Nginx的proxy_cache模块是Nginx代理功能的一部分,它允许Nginx缓存来自
- 吴恩达机器学习入门笔记(Week 1)
冒冒喵
吴恩达机器学习入门机器学习笔记人工智能
吴恩达机器学习Week1学习资源及工具机器学习分类专业术语(Terminology)线性回归模型(Linearregression)代价函数(costfunction)学习资源及工具1、课程资源:B站大学2、相关工具:Jupter&Github3、书籍资源:神经网络与深度学习(MichaelNielsen)、机器学习(周志华)、统计学习方法(李航)…机器学习分类1、监督学习(supervisedl
- neo4j导出导入csv文件
qq_45133760
neo4jneo4j
neo4j导出导入csv文件提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录neo4j导出导入csv文件前言一、导出csv文件二、导入csv总结前言有时候需要吧一个数据库导入导入另一个数据库。有两种方法,本文介绍命令行admin方法,还有cypher方法,
- 【机器学习基础】机器学习入门核心:Jaccard相似度 (Jaccard Index) 和 Pearson相似度 (Pearson Correlation)
白熊188
机器学习基础机器学习人工智能
机器学习入门核心:Jaccard相似度(JaccardIndex)和Pearson相似度(PearsonCorrelation)一、算法逻辑Jaccard相似度(JaccardIndex)**Pearson相似度(PearsonCorrelation)**二、算法原理与数学推导1.Jaccard相似度公式2.Pearson相似度公式三、模型评估中的角色相似度度量的评估重点在推荐系统中的评估四、应用
- sns.load_dataset(“iris“)无法导入,无需下载seaborn到本地的解决方案
九龙湖野生炼丹民工
python机器学习sklearn
最近发现很多机器学习入门教程选择从seaborn中加载鸢尾花(iris)数据集,然而直接运行因为连接问题或本地无对应数据库会带来很多问题,常规的解决方法为从github下载seaborn-data保存到本地,但是操作仍然比较繁琐,且小白可能对于git下载和本地的数据存放形式也不熟悉,这里提供一种替换方法,改为从机器学习库scikitlearn中导入iris数据集,并转换为教程中的dataframe
- 【机器学习基础】机器学习入门核心算法:K-近邻算法(K-Nearest Neighbors, KNN)
白熊188
机器学习基础python算法机器学习近邻算法
机器学习入门核心算法:K-近邻算法(K-NearestNeighbors,KNN)一、算法逻辑1.1基本概念1.2关键要素距离度量K值选择二、算法原理与数学推导2.1分类任务2.2回归任务2.3时间复杂度分析三、模型评估3.1评估指标3.2交叉验证调参四、应用案例4.1手写数字识别4.2推荐系统五、经典面试题问题1:KNN的主要优缺点?问题2:如何处理高维数据?问题3:KNN与K-Means的区别
- QT信号和槽
出现一片乱码
QT开发qt开发语言
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、信号和槽信号的特点:槽的特点二、连接1、QT42、QT5四、注意事项五、扩展前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重
- 量化用到的机器学习书籍推荐
输出输入
人工智能+量化EA机器学习
以下是一些适合不同层次读者的机器学习书籍推荐:零基础入门-《机器学习入门必备》:这本书没有复杂的公式推导,而是通过类比、案例和图片,通俗易懂地讲解了机器学习的基本概念、工具、数据处理、建模与优化等内容,非常适合没有任何基础的人工智能爱好者。-《MachineLearningforHumans》:以通俗易懂的方式系统全面地介绍机器学习相关知识,理论部分之后还有充足的实践材料和最新进展与应用,适合初学
- 26备战秋招day17——机器学习基础
如意鼠
26秋招机器学习人工智能
机器学习入门指南:常见算法详解与代码实现机器学习(MachineLearning,ML)是人工智能(AI)的一个重要分支,旨在通过数据驱动的方法让计算机系统自动学习和改进。对于刚接触机器学习的朋友来说,了解各种算法的基本原理及其实现方法至关重要。本篇文章将通俗易懂地介绍几种常见的机器学习算法,解释其背后的数学原理,并提供简单的代码示例,帮助你更好地理解这些算法的工作机制。目录什么是机器学习?监督学
- python机器学习入门案例——基于SVM分类器的鸢尾花分类(附完整代码)
左手の明天
python机器学习python深度学习机器学习
数据集介绍总共包含150行数据每一行数据由4个特征值及一个目标值组成。4个特征值分别为:萼片长度、萼片宽度、花瓣长度、花瓣宽度目标值为三种不同类别的鸢尾花,分别为:IrisSetosa、IrisVersicolour、IrisVirginica数据集中每朵鸢尾花叫做一个数据点,它的品种叫做它的标签数据集样式:导入需要的模块包importnumpya
- 机器学习基本概念
zhangbijun1230
机器学习
机器学习入门好文,强烈推荐转载2017年02月01日23:44:3064729导读:在本篇文章中,将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。当然,本文也面对一般读者,不会对阅读有相关的前提要求。在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢?我并不直接回答这个问题前。相反,我想请大
- 2020-06-23 暑期学习日更计划(机器学习入门之路(资源汇总)+概率论)
苹果酱0567
面试题汇总与解析课程设计springbootvue.jsjavamysql
机器学习入门前言 说实话,机器学习想学好真心不易,很多时候都感觉自己学得云里雾里。以前一段时间自己为了完成毕业设计,在机器学习的理论部分并没有深究,仅仅通过TensorFlow框架力求快速实现模型。现在来看,很多时候因为基础知识不牢固,一些问题很难想通。而现在暑假正好有一大块可以自由学习的时间,希望自己能重新学习一下关于机器学习、或是深度学习理论方面的知识,并且通过一些项目,让自己更好的熟悉人工
- (一)POI 4.1.2 颜色 color
YuHan_2020
poipoiexceljava
(一)POI4.1.2颜色color提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用文章目录(一)POI4.1.2颜色color前言一、IndexedColors所有颜色二、使用步骤1.pom.xml中引入依赖2.运行IndexedColorsExamplemain方法总结前言POI文档与示例方面对国人并不友好,往往不知道怎么
- 局域网访问django网页
我爱欧阳
djangopython后端
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用-Djangoweb局域网访问–提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、修改setting.py,运行外部访问django二、启动django框架三、查看本机IP地址:四、在浏览器中输入网址:总结前言提示:这里可以添
- Python之机器学习入门
兮兮能吃能睡
环境工程之交叉发展python机器学习开发语言
机器学习与Python的结合非常紧密,Python因其简洁的语法和丰富的库成为机器学习的主流语言。以下是一个机器学习入门指南及Python代码示例:我的机器学习之路(初稿)1.常用Python机器学习库Scikit-learn:经典机器学习算法库TensorFlow/PyTorch:深度学习框架Pandas:数据处理与分析NumPy:数值计算Matplotlib/Seaborn:数据可视化安装命令
- 一文详细梳理!大模型从理论到实战落地必备干货!零基础入门到精通,收藏这一篇就够了
网络安全大白
科技网络安全程序员安全网络安全系统安全
在人工智能的浩瀚星辰中,大模型犹如璀璨的北极星,引领着技术的前沿方向。它们不仅代表了深度学习领域的最新突破,更成为了推动各行各业智能化转型的关键力量。本文笔者总结了大模型从理论研究到实战落地所需具备的所有知识干货,与大家分享~基础知识数学深入浅出动态可视化数学之美(几何、微积分、概率论、线性代数等):https://space.bilibili.com/88461692/机器学习吴恩达机器学习入门
- 2025年AI开发学习路线
By北阳
AI人工智能学习aiAIGC
目录一、基础阶段(2-3个月)1.数学与编程基础2.机器学习入门二、核心技能(3-4个月)1.深度学习与框架2.大模型开发(重点)三、进阶方向(3-6个月)1.多模态与智能体(Agent)2.行业应用与部署四、实战项目推荐五、学习资源整合持续学习建议一、基础阶段(2-3个月)1.数学与编程基础数学知识线性代数:矩阵运算、特征值与特征向量(参考《线性代数及其应用》及Coursera课程[Linear
- 【机器学习】机器学习入门基础普及介绍(面向新人小白)
偷偷的卷
机器学习人工智能python学习
hello大家好!机器学习的小文章如期而至~还是和数据结构的顺序一样,也是从头开始描述,有基础的朋友可以看目录划重点哈OK,咱们话不多说,直奔主题!本次介绍也是根据我之前学习的经验来选择相应的内容,也参考了带我的教授的一些教学内容,所以可以说是经历之谈,不是那种方方面面俱全的百科,略写的部分后续的文章还会展开讲的,不好理解的地方也带过了或者没有提及,毕竟是入门嘛(顺带一提,这位教授来自MIT,大家
- 真正适合小白的机器学习入门(python基础小白也能行)
一心向上的小奥
机器学习入门机器学习python人工智能
算法一Kmeans聚类原理:K-Means是一种非常经典的聚类算法,其基本思想是:基于给定的数据点集合,通过迭代过程寻找k个聚类中心,使得各数据点到其最近聚类中心的距离之和最小。方法概述:初始化:随机选择k个数据点作为初始的聚类中心。分配:将每个数据点分配给最近的聚类中心。更新:根据分配的结果,重新计算每个聚类的中心。重复:重复步骤2和步骤3,直到聚类中心不再改变或达到最大迭代次数代码实现impo
- 人工智能与机器学习入门:决策树应用
决策树机器学习入门
在人工智能与机器学习入门:使用Kaggle完成Titanic推断学习一文中,给出了使用Kaggle进行机器学习入门的方法,本文基于上文的需求。尝试使用决策树模型来训练数据,并进行test数据集的测试。什么是决策树决策树,简单来讲可以认为是一个大的ifelse判断树,有了决策树后,测试集中的数据便可以使用该决策树进行判断了。比如根据Titanic的训练数据构造了上次决策树后,便可以根据测试数据的性别
- 机器学习入门第三集——如何完整实现一次模型训练
梯度寻优者_超
机器学习人工智能python算法大数据回归数据分析
提示:如何完整的从数据导入到最后模型训练以及模型保存,本集进行介绍。文章目录上集回顾一、数据集是什么?二、完整训练过程1.导入数据2.数据集划分3.模型训练4.模型保存以及加载总结下集预告上集回顾提示:上集已经对机器学习基础知识分类常用算法等进行了描述,这集开始是如何完整训练模型,前两集已经介绍了机器学习的通俗解释,已经常见分类,还有机器学习深度学习强化学习的关系和区别。有想看的小伙伴可以翻我主页
- 《Python机器学习基础教程》第1讲:机器学习入门与Python基础
earthzhang2021
2025讲书课专栏python机器学习开发语言人工智能1024程序员节
欢迎来到机器学习的世界!今天我们要开启一段精彩的旅程,一起探索机器学习的奥秘。你可能听说过这个词,但它到底是什么?又能做什么呢?别急,我们慢慢来。1.机器学习是什么?想象一下,你每天早上都会根据天气预报决定穿什么衣服。如果天气预报说今天很冷,你就会穿厚外套;如果预报说很热,你可能会穿短袖。这个过程其实就是一个简单的“决策系统”——你根据输入(天气预报)做出输出(穿什么衣服)。机器学习也是一样,它是
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round