E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
机器学习入门
Python机器学习:基础、算法与实战
本书主要包含两部分内容,第一部分为Python
机器学习入门
知识:主要介绍了Python基础内容、Numpy与Pandas库数据操作、Matplotlib与Seaborn库数据可视化、Sklearn库机器学习
大梦想程序商店
·
2025-03-26 07:03
python
机器学习
算法
开发语言
人工智能
通往 AI 之路:Python
机器学习入门
-语法基础
第一章Python语法基础Python是一种简单易学的编程语言,广泛用于数据分析、机器学习和人工智能领域。在学习机器学习之前,我们需要先掌握Python的基本语法。本章将介绍Python的变量与数据类型、条件语句、循环、函数以及文件操作,帮助你建立扎实的基础。1.1变量与数据类型Python支持多种数据类型,包括整数(int)、浮点数(float)、字符串(str)和布尔值(bool)。变量是用于
一小路一
·
2025-03-26 06:55
从0开始学习机器学习
人工智能
python
机器学习
后端
开发语言
学习
嵌入式领域
机器学习入门
指南
基本概念机器学习是一门使计算机无需进行明确编程即可学习的科学。它主要利用数据或以往的经验,以此来改进计算机自身的性能。以下是一些核心概念:监督学习:训练数据包含输入和预期输出,模型的目的是学习这两者之间的映射关系。无监督学习:训练数据只包含输入,没有标签的情况下,模型需要自己找出数据的结构或模式。强化学习:通过与环境交互,采取行动以最大化某种累积奖励。深度学习:一种特殊的机器学习方法,通过使用具有
AI嵌入式
·
2025-03-26 05:47
Python
机器学习
机器学习
人工智能
基于Python的
机器学习入门
指南
本文将为初学者提供一份基于Python的
机器学习入门
指南,帮助你快速上手并掌握机器学习的基本概念和实践方法。一、机器
Blossom.118
·
2025-03-26 05:15
分布式系统与高性能计算领域
python
机器学习
开发语言
个人开发
人工智能
经验分享
其他
Flink启动任务
Flink以本地运行作为解读例如:第一章Python
机器学习入门
之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Flink前言StreamExecutionEnvironmentLocalExecutorMiniClusterStreamGraph
swg321321
·
2025-03-21 12:18
flink
大数据
人工智能与
机器学习入门
:基尼系数(Gini Index)和基于熵(Entropy)
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
·
2025-03-18 13:50
基尼系数基于熵机器学习入门
Python 科学计算与
机器学习入门
:NumPy + Scikit-Learn 实战指南
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
吴师兄大模型
·
2025-03-15 09:25
python
numpy
scikit-learn
人工智能
开发语言
机器学习
编程
深度学习/
机器学习入门
基础数学知识整理(一):线性代数基础,矩阵,范数等
前面大概有2年时间,利用业余时间断断续续写了一个机器学习方法系列,和深度学习方法系列,还有一个三十分钟理解系列(一些趣味知识);新的一年开始了,今年给自己定的学习目标——以补齐基础理论为重点,研究一些基础课题;同时逐步继续写上述三个系列的文章。最近越来越多的研究工作聚焦研究多层神经网络的原理,本质,我相信深度学习并不是无法掌控的“炼金术”,而是真真实实有理论保证的理论体系;本篇打算摘录整理一些最最
chljerry_mouse
·
2025-03-13 15:19
线性代数
深度学习
机器学习
机器学习入门
指南:从 TensorFlow 到 PyTorch
机器学习入门
指南:从TensorFlow到PyTorch机器学习(MachineLearning)是人工智能的核心领域之一,近年来在图像识别、自然语言处理、推荐系统等领域取得了巨大进展。
6v6-博客
·
2025-03-12 06:23
机器学习
tensorflow
pytorch
机器学习入门
知识
目录前言一、机器学习是什么?二、机器学习的基本类型1.监督学习2.无监督学习3.半监督学习4.强化学习三、机器学习的工作流程四、常见的机器学习算法五、机器学习的评价指标六、机器学习中的过拟合与欠拟合七、机器学习的应用八、学习机器学习的资源前言随着人工智能的发展,作为人工智能中的一个基础且重要的分支——机器学习也是愈发吸引大家来了解以及学习,那么在学习机器学习前,我们需要先来了解一下什么是机器学习,
十五境剑修
·
2025-03-08 09:33
机器学习
人工智能
通往 AI 之路:Python
机器学习入门
-线性代数
2.1线性代数(机器学习的核心)线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。2.1.1标量、向量、矩阵1.标量(Scalar)标量是一个单独的数,例如:a=5在Python中:a=5#标量2.向量(Vector)向量是由多个数值组成的一维数组,例如:v=[2,3,5]Pytho
一小路一
·
2025-03-06 02:27
从0开始学习机器学习
机器学习
人工智能
python
后端
开发语言
线性代数
数据采集技术:selenium/正则匹配/xpath/beautifulsoup爬虫实例
专栏介绍1.专栏面向零基础或基础较差的
机器学习入门
的读者朋友,旨在利用实际代码案例和通俗化文字说明,使读者朋友快速上手机器学习及其相关知识体系。
写代码的中青年
·
2025-02-26 08:48
3天入门机器学习
selenium
beautifulsoup
爬虫
python
xpath
正则表达式
人工智能与
机器学习入门
:基尼系数(Gini Index)和基于熵(Entropy)
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
·
2025-02-20 17:46
基尼系数基于熵机器学习入门
人工智能与
机器学习入门
:决策树应用
在人工智能与
机器学习入门
:使用Kaggle完成Titanic推断学习一文中,给出了使用Kaggle进行
机器学习入门
的方法,本文基于上文的需求。尝试使用决策树模型来训练数据,并进行test数据集的测试。
·
2025-02-20 00:24
决策树机器学习入门
AI 百炼成神:线性回归,预测房价
这是一个经典的
机器学习入门
项目,可以帮助你理解如何使用线性回归模型来预测连续的数值。第一个项目:线性回归预测房价项目目标学习线性回归的基本概念。使用历史房价数据建立一个预测模型。
github_czy
·
2025-02-19 07:31
AI
百炼成神:100
个项目玩转人工智能
python
开发语言
机器学习入门
-读书摘要
先看了《深度学习入门:基于python的理论和实践》这本电子书,早上因为入迷还坐过站了。。因为里面的反向传播和链式法则特别难懂,又网上搜了相关内容进行进一步理解,参考的以下文章(个人认为都讲的都非常好):https://zhuanlan.zhihu.com/p/65472471https://zhuanlan.zhihu.com/p/635438713https://zhuanlan.zhihu.
不像程序员的程序媛
·
2025-02-16 03:53
机器学习
人工智能
【人工智能-初级】第20章 使用 Matplotlib 和 Seaborn 进行数据可视化
【人工智能-初级】系列专栏【人工智能-初级】第1章人工智能概述【人工智能-初级】第2章
机器学习入门
:从线性回归开始【人工智能-初级】第3章k-最近邻算法(KNN):分类和Python实现【人工智能-初级
若北辰
·
2025-02-09 03:57
人工智能
信息可视化
人工智能
matplotlib
组队学习首次开放许愿啦!下个月想学什么,听你的
举个栗子,不推荐大家直接许愿:「机器学习」,而是许愿:「
机器学习入门
概念讲解」,或者具体到某个算法:「线性回归的公式推导+代码实战」,这样便于我们在1个月内完成制作。▶不限制课程难度,只要是刚需就
·
2025-02-07 09:18
datawhale
机器学习入门
——机器学习基本概念
@机器学习什么是机器学习机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎简单来说机器学习就是机
四月是你的
·
2025-01-28 06:33
机器学习
【2025 ODA teigha .NET系列开发教程 第五章】给CAD实体添加附属数据XDATA,包括源码
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python
机器学习入门
之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档2025ODAteigha.NET
三好学生~张旺
·
2025-01-23 22:34
ODA
Teigha
.NET开发教程
.net
机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
对于初学者来说,scikit-learn是一个理想的
机器学习入门
工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。
wyc9999ww
·
2025-01-21 14:39
机器学习
scikit-learn
jupyter
人工智能
python
机器学习入门
:机器学习的基本概念
姓名:高亦凡学号:19020100056学院:电子工程学院转载自:原文链接【嵌牛导读】机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。【嵌牛鼻子】机器学习【嵌牛提问】什么是机器学
Louis0687
·
2024-08-31 04:34
【机器学习基础】正则化
往期推荐:【机器学习基础】
机器学习入门
(1)【机器学习基础】
机器学习入门
(2)【机器学习基础】机器学习的基本术语【机器学习基础】机器学习的模型评
为梦而生~
·
2024-02-25 02:40
机器学习
机器学习
人工智能
机器学习入门
--LSTM原理与实践
LSTM模型长短期记忆网络(LongShort-TermMemory,LSTM)是一种常用的循环神经网络(RNN)变体,特别擅长处理长序列数据和捕捉长期依赖关系。本文将介绍LSTM模型的数学原理、代码实现和实验结果,并使用pytorch和sklearn的数据集进行验证。数学原理遗忘门(ForgetGate)遗忘门的作用是决定前一时间步的细胞状态中哪些信息需要被遗忘。具体计算公式为:ft=σ(Wf⋅
Dr.Cup
·
2024-02-20 05:14
机器学习入门
机器学习
lstm
人工智能
机器学习入门
--双向长短期记忆神经网络(BiLSTM)原理与实践
双向长短记忆网络(BiLSTM)BiLSTM(双向长短时记忆网络)是一种特殊的循环神经网络(RNN),它能够处理序列数据并保持长期记忆。与传统的RNN模型不同的是,BiLSTM同时考虑了过去和未来的信息,使得模型能够更好地捕捉序列数据中的上下文关系。在本文中,我们将详细介绍BiLSTM的数学原理、代码实现以及应用场景。数学原理LSTM(长短期记忆网络)是一种递归神经网络(RNN),通过引入门控机制
Dr.Cup
·
2024-02-20 05:14
机器学习入门
机器学习
神经网络
lstm
机器学习入门
--循环神经网络原理与实践
循环神经网络循环神经网络(RNN)是一种在序列数据上表现出色的人工神经网络。相比于传统前馈神经网络,RNN更加适合处理时间序列数据,如音频信号、自然语言和股票价格等。本文将介绍RNN的基本数学原理、使用PyTorch和Scikit-Learn数据集实现的代码。数学原理RNN是一种带有循环结构的神经网络,其在处理序列数据时将前一次的输出作为当前输入的一部分。这使得RNN能够记住先前的状态和信息,并且
Dr.Cup
·
2024-02-20 05:44
机器学习入门
机器学习
rnn
深度学习
机器学习入门
--门控循环单元(GRU)原理与实践
GRU模型随着深度学习领域的快速发展,循环神经网络(RNN)已成为自然语言处理(NLP)等领域中常用的模型之一。但是,在RNN中,如果时间步数较大,会导致梯度消失或爆炸的问题,这影响了模型的训练效果。为了解决这个问题,研究人员提出了新的模型,其中GRU是其中的一种。本文将介绍GRU的数学原理、代码实现,并通过pytorch和sklearn的数据集进行试验,最后对该模型进行总结。数学原理GRU是一种
Dr.Cup
·
2024-02-20 05:43
机器学习入门
机器学习
gru
人工智能
机器学习入门
--多层感知机原理与实践
神经网络与多层感知机神经网络是一种模仿生物神经系统结构和功能的计算模型。它由许多个节点(或称为神经元)组成,这些节点通过连接权重相互连接。神经网络的输入经过一系列的加权求和和激活函数变换后,得到输出结果。神经网络的训练过程主要包括前向传播和反向传播两个阶段。前向传播是指数据从输入层逐层传递到输出层的过程,每一层的节点都会根据输入值和连接权重计算输出值。反向传播是指通过计算损失函数对网络参数进行梯度
Dr.Cup
·
2024-02-13 13:37
机器学习入门
机器学习
人工智能
机器学习入门
--BP神经网络原理与实践
BP神经网络引言BP神经网络,即反向传播神经网络,是一种监督学习算法,用于多层前馈神经网络的训练。自从1986年由Rumelhart,Hinton和Williams提出以来,它已成为最流行的神经网络训练算法之一。BP算法的核心思想是通过计算损失函数相对于网络参数的梯度,然后利用这些梯度信息来更新网络的权重和偏置,从而最小化误差。数学原理BP算法的数学原理基于链式法则计算梯度。考虑一个简单的两层神经
Dr.Cup
·
2024-02-13 13:37
机器学习入门
机器学习
神经网络
人工智能
机器学习入门
--朴素贝叶斯原理与实践
朴素贝叶斯算法朴素贝叶斯是一种常用的分类算法,其基本思想是根据已有数据的特征和标签,学习出一个概率模型,并利用该模型对新样本进行分类。其优点在于简单快速、易于实现和解释,缺点在于对输入数据的分布做了严格的假设。具体来说,朴素贝叶斯分类器首先根据训练数据计算出每个类别的先验概率P©,即样本中每个类别占比。然后,对于给定的待分类样本,计算出它属于每个类别的条件概率P(X|C),其中X表示样本的特征向量
Dr.Cup
·
2024-02-13 13:07
机器学习入门
机器学习
概率论
人工智能
机器学习入门
--奇异值分解原理与实践
奇异值分解奇异值分解(SingularValueDecomposition,SVD)是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。奇异值分解数学原理奇异值分解是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。具体来说,对于一个m
Dr.Cup
·
2024-02-13 13:07
机器学习入门
机器学习
人工智能
机器学习入门
--主成分分析原理与实践
主成分分析主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的降维技术和数据分析方法。它通过线性变换将原始高维数据映射到低维空间,从而提取出数据中最重要的特征。主成分分析的基本原理与数学推导基本原理PCA的主要思想是找到一个新的坐标系,将数据投影到这个坐标系上,使得投影后的数据具有最大的方差。这意味着在新的坐标系下,数据的信息尽可能地集中在少数几个维度上,而其
Dr.Cup
·
2024-02-13 13:06
机器学习入门
机器学习
概率论
人工智能
机器学习入门
--逻辑回归与简单二分类数据实战
逻辑回归在机器学习领域,逻辑回归是一个广泛应用于分类问题的算法。与线性回归不同,逻辑回归用于预测离散的类别标签,可以处理二分类和多分类问题。下面我们将介绍逻辑回归的基本原理和实现方式。原理逻辑回归的目标是找到一个函数g(z)g(z)g(z),将输入的特征向量xxx映射到概率值p(y=1∣x;w)p(y=1|x;w)p(y=1∣x;w),其中www是参数向量。我们可以使用sigmoid函数来实现这个
Dr.Cup
·
2024-02-13 13:36
机器学习入门
机器学习
逻辑回归
分类
机器学习入门
--支持向量机原理与实践
支持向量机模型支持向量机(SupportVectorMachine,SVM)是一种常用的监督学习算法,主要用于分类和回归问题。它的原理简单而强大,在许多实际应用中取得了很好的效果。原理支持向量机(SupportVectorMachine,SVM)是一种常用的机器学习算法,用于分类和回归问题。其原理是基于统计学习理论中的结构风险最小化原则。SVM的主要思想是将数据通过一个高维特征空间进行映射,使得在
Dr.Cup
·
2024-02-13 13:36
机器学习入门
支持向量机
机器学习
算法
机器学习入门
--简单卷积神经网络原理与实践
深入理解卷积神经网络(CNN)引言卷积神经网络(ConvolutionalNeuralNetworks,CNN)是深度学习中的一种核心算法,广泛应用于图像识别、视频分析和自然语言处理等领域。CNN通过模拟人类视觉系统的工作原理,能够自动并有效地识别图像中的模式和特征。数学原理CNN主要由卷积层、激活层和池化层组成。其核心在于卷积层,它使用一系列可学习的滤波器来扫描输入数据。卷积操作卷积神经网络(C
Dr.Cup
·
2024-02-13 13:06
机器学习入门
机器学习
cnn
人工智能
机器学习入门
之基础概念及线性回归
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习L2-Norm,L1-Norm,L0-Norm推导正则化公式说明为什么用L1-Norm代替L0-Norm学习为什么只对w/Θ做限制,不对b做限制Question1:Wh
StarCoder_Yue
·
2024-02-12 11:01
算法
机器学习
学习笔记
机器学习
线性回归
正则化
人工智能
算法数学
浏览器F12调试
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python
机器学习入门
之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录
知行合一。。。
·
2024-02-09 01:11
测试技术
功能测试
ui转py
pyqt系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python
机器学习入门
之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录
CN-JackZhang
·
2024-02-07 05:05
qt
python
开发语言
机器学习入门
-----sklearn
机器学习基础了解概念机器学习是人工智能的一个实现途径深度学习是机器学习的一个方法发展而来定义:从数据中自动分析获得模型,并利用模型对特征数据【数据集:特征值+目标值构成】进行预测算法数据集的目标值是类别的话叫做分类问题;目标值是连续的数值的话叫做回归问题;统称监督学习;另一类是无监督学习,这一类的数据集没有目标值,典型:聚类;做什么可以进行传统预测、图像识别、自然语言处理传统预测店铺销量预测、量化
辣椒酱.
·
2024-02-03 07:30
python
机器学习
sklearn
人工智能
模式识别 | PRML概览
阅读起来有一定难度,不适合作为
机器学习入门
教材。然而这本书提供的贝叶斯视角有助于我们更为立体全面理解一些经典模型。全书分为十四个章节,这里我尽可能简要概述每个章节的主要内容,如果
ZIYUE WU
·
2024-02-03 07:48
Machine
Learning
Windows Server 2019 Web服务器搭建
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python
机器学习入门
之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录
可惜已不在
·
2024-02-02 19:49
windows
运维
服务器
一、容器化技术-docker初识
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python
机器学习入门
之pandas的使用目录前言一、docker是什么?
天灾领主加尔鲁什
·
2024-02-01 12:25
原生云
容器
docker
机器学习入门
(10)— 浅显易懂的计算图、链式法则讲解
1.计算图概念计算图将计算过程用图形表示出来。这里说的图形是数据结构图,通过多个节点和边表示(连接节点的直线称为“边”)。2.计算图求解问题1:小明在超市买了2个100日元一个的苹果,消费税是10%,请计算支付金额。计算图通过节点和箭头表示计算过程。节点用○表示,○中是计算的内容。将计算的中间结果写在箭头的上方,表示各个节点的计算结果从左向右传递。用计算图解问题1,求解过程如图5-1所示。虽然图5
wohu007
·
2024-01-31 23:41
Machine
Learning
【无标题】
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python
机器学习入门
之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一
MarkHD
·
2024-01-31 18:03
python
pandas
机器学习
机器学习入门
笔记06:逻辑回归
逻辑回归学习逻辑回归原理实现代码importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportdatasetsfromsklearn.model_selectionimporttrain_test_split#因为逻辑回归是分类问题,因此需要对评价指标进行更改#from.metricsimportaccuracy_scoreclassLog
劳斯Laus
·
2024-01-31 08:05
最强
机器学习入门
博客(吴恩达机器学习课程总结)
机器学习的概述诞生现实生活许多领域的问题不能通过显式编程实现,比如制造自动驾驶汽车、智能工厂、规模农业、计算机视觉等等,一种好的实现方式是通过学习算法让计算机自己学习如何做。现在现在是学习机器学习最好的时机,因为机器学习在未来能产生巨大的价值未来机器学习在软件领域方面取得了巨大的价值,比如智能推荐,网络搜索,图像识别等机器学习在许多其他的领域仍有巨大的价值,比如未来在自动驾驶汽车,工厂,农业,医疗
PengHao666999
·
2024-01-30 23:32
机器学习
人工智能
【机器学习笔记】0 基础知识之python基础
注:本文内容仅为个人学习笔记,教程为黄海广老师主讲的
机器学习入门
系列,课程链接(中国大学慕课,有习题和证书)课程资源(pdf版本课件和代码)公布在Github链接课程视频也可以在b站观看(观看方便,但无课后习题和证书
RIKI_1
·
2024-01-28 23:41
机器学习
机器学习
笔记
python
如何系统学习机器学习?
以下是一些推荐的书籍:《动手学机器学习》,"西瓜书"作者周志华力荐的
机器学习入门
书。本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器
人邮异步社区
·
2024-01-28 14:23
学习
机器学习
人工智能
【机器学习笔记】0 背景知识之数学基础
注:本文内容仅为个人学习笔记,教程为黄海广老师主讲的
机器学习入门
系列,课程链接(中国大学慕课,有习题和证书):https://www.icourse163.org/course/WZU-1464096179
RIKI_1
·
2024-01-28 10:24
机器学习
机器学习
笔记
人工智能
《Python 简易速速上手小册》第9章:数据科学和
机器学习入门
(基于最新版 Python3.12 编写)
注意:本《Python简易速速上手小册》核心目的在于让零基础新手「快速构建Python知识体系」文章目录注意:本《Python简易速速上手小册》核心目的在于让零基础新手「快速构建Python知识体系」9.1Python在数据科学中的应用9.1.1数据处理与清洗9.1.2数据分析9.1.3数据可视化9.2NumPy和Pandas基础9.2.1NumPy基础9.2.2Pandas基础9.3简介机器学习
江帅帅
·
2024-01-28 02:15
《Python
简易速速上手小册》
python
机器学习
开发语言
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他