最小生成树之prim算法(转载出处)
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。
最小生成树(MST):权值最小的生成树。
生成树和最小生成树的应用:要连通n个城市需要n-1条边线路。可以把边上的权值解释为线路的造价。则最小生成树表示使其造价最小的生成树。
构造网的最小生成树必须解决下面两个问题:
1、尽可能选取权值小的边,但不能构成回路;
2、选取n-1条恰当的边以连通n个顶点;
MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集。若(u,v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树。
1.prim算法
基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U={u0}(u0∈V)、TE={}开始。重复执行下列操作:
在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。
此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。
Prim算法的核心:始终保持TE中的边集构成一棵生成树。
注意:prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。
看了上面一大段文字是不是感觉有点晕啊,为了更好理解我在这里举一个例子,示例如下:
(1)图中有6个顶点v1-v6,每条边的边权值都在图上;在进行prim算法时,我先随意选择一个顶点作为起始点,当然我们一般选择v1作为起始点,好,现在我们设U集合为当前所找到最小生成树里面的顶点,TE集合为所找到的边,现在状态如下:
U={v1}; TE={};
(2)现在查找一个顶点在U集合中,另一个顶点在V-U集合中的最小权值,如下图,在红线相交的线上找最小值。
通过图中我们可以看到边v1-v3的权值最小为1,那么将v3加入到U集合,(v1,v3)加入到TE,状态如下:
U={v1,v3}; TE={(v1,v3)};
(3)继续寻找,现在状态为U={v1,v3}; TE={(v1,v3)};在与红线相交的边上查找最小值。
我们可以找到最小的权值为(v3,v6)=4,那么我们将v6加入到U集合,并将最小边加入到TE集合,那么加入后状态如下:
U={v1,v3,v6}; TE={(v1,v3),(v3,v6)}; 如此循环一下直到找到所有顶点为止。
(4)下图像我们展示了全部的查找过程:
2.prim算法程序设计
(1)由于最小生成树包含每个顶点,那么顶点的选中与否就可以直接用一个数组来标记used[max_vertexes];(我们这里直接使用程序代码中的变量定义,这样也易于理解);当选中一个数组的时候那么就标记,现在就有一个问题,怎么来选择最小权值边,注意这里最小权值边是有限制的,边的一个顶点一定在已选顶点中,另一个顶点当然就是在未选顶点集合中了。我最初的一个想法就是穷搜了,就是在一个集合中选择一个顶点,来查找到另一个集合中的最小值,这样虽然很易于理解,但是很明显效率不是很高,在严蔚敏的《数据结构》上提供了一种比较好的方法来解决:设置两个辅助数组lowcost[max_vertexes]和closeset[max_vertexes],lowcost[max_vertexes]数组记录从U到V-U具有最小代价的边。对于每个顶点v∈V-U,closedge[v], closeset[max_vertexes]记录了该边依附的在U中的顶点。
注意:我们在考虑两个顶点无关联的时候设为一个infinity 1000000最大值。
说了这么多,感觉有点罗嗦,还是发扬原来的风格举一个例子来说明,示例如下:
过程如下表:顶点标号都比图中的小1,比如v1为0,v2为1,这里首先选择v1点。
|
Lowcost[0] |
Lowcost[1] |
Lowcost[2] |
Lowcost[3] |
Lowcost[4] |
Lowcost[5] |
U |
V-U |
closeset |
v1,infinity |
v1,6 |
v1,1 |
v1,5 |
v1,infinity |
v1,infinity |
v1 |
v1,v2,v3,v4,v5,v6 |
从这个表格可以看到依附到v1顶点的v3的Lowcost最小为1,那么选择v3,选择了之后我们必须要更新Lowcost数组的值,因为记录从U到V-U具有最小代价的边,加入之后就会改变。这里更新Lowcost和更新closeset数组可能有点难理解,
for (k=1;k
if (!used[k]&&(G[j][k]
{ lowcost[k]=G[j][k];
closeset[k]=j; }
}
j为我们已经选出来的顶点,如果G[j][k],则意味着最小权值边发生变化,更新该顶点的最小lowcost权值,依附的顶点肯定就是刚刚选出的顶点j,closeset[k]=j。
|
Lowcost[0] |
Lowcost[1] |
Lowcost[2] |
Lowcost[3] |
Lowcost[4] |
Lowcost[5] |
U |
V-U |
closeset |
v1,infinity |
v1,6 |
v1,1 |
v1,5 |
v3,6 |
v3,4 |
v1,v3 |
v1,v2,v4,v5,v6 |
这样一直选择下去直到选出所有的顶点。
(2)上面把查找最小权值的边结束了,但是这里有一个问题,就是我们没有存储找到的边,如果要求你输出找到的边那么这个程序就需要改进了,我们刚开始的时候选取的是v1作为第一个选择的顶点,那我们设置一个father[]数组来记录每个节点的父节点,当然v1的父节点肯定没有,那么我们设置一个结束标志为-1,每次找到一个新的节点就将它的父节点设置为他依附的节点,这样就可以准确的记录边得存储了。
最小生成树,克鲁斯卡尔算法.(转载出处)
算法简述:
将每个顶点看成一个图.
在所有图中找权值最小的边.将这条边的两个图连成一个图,
重复上一步.直到只剩一个图.
注:将abcdef每个顶点看成一个图.将最小权值的边的两个图连接.
连接最小权值为1的两个图,这时a-c,b,d,e,f.
连接最小权值为2的两个图,这时a-c,b,d-f,e.
连接最小权值为3的两个图,这时a-c,b-e,d-f.
连接最小权值为4的两个图,这时a-c-f-d,b-e.(c-f)
连接最小权值为5的两个图,这时a-c-b-e-f-d.(b-c)
结束.
根据上述操作,我们需要一个存储边信息的数组(Edge结构体),Edge包含了边的两个节点和权值.
1 typedef struct
2 {
3 int head;//边的始点下标
4 int tail;//边的终点下标
5 int power;//边的权值
6 } Edge;
还需要一个visited数组,用来标识图中的节点信息.
算法操作:
初始化一棵树(用来保存最小生成树,直接输出也行.)
将图中所有边复制到一个数组中,将数组排序(递增顺序)
将小边的两个顶点连接.将两个图合并成一个图.
重复上一步.
临街矩阵的代码实现
代码中,ijk做循环用,v1,v2做边的两个顶点信息的下标,vs1,vs2做标识v1和v2所属图
1-27行,初始化visited,edge,kruskal_tree等信息.
29-44行,生成一棵最小生成树.
35行,if是为了防止回路,vs1和vs2标识一个这两点是否属于一个图.
38行,for是为了将visited数组中vs2边成vs1,因为这时,v1和v2已经在一个图里了.
1 void kruskal(Graph * graph, Graph * kruskal_tree)
2 {
3 int visited[graph->vertexs];
4 Edge edge[graph->brim];
5 int i, j, k;
6 int v1, v2, vs1, vs2;
7
8 for ( i = 0; i < graph->vertexs; i++ )
9 visited[i] = i;
10
11 k = 0;
12 for ( i = 0; i < graph->vertexs; i++ )
13 {
14 for ( j = i + 1; j < graph->vertexs; j++ )
15 {
16 if ( graph->arcs[i][j] != MAX_VALUE )
17 {
18 edge[k].head = i;
19 edge[k].tail = j;
20 edge[k].power = graph->arcs[i][j];
21 k++;
22 }
23 }
24 }
25
26 init_kruskal(graph, kruskal_tree);
27 my_sort(edge, graph->brim);
28
29 for ( i = 0; i < graph->brim; i++ )
30 {
31 v1 = edge[i].head;
32 v2 = edge[i].tail;
33 vs1 = visited[v1];
34 vs2 = visited[v2];
35 if ( vs1 != vs2 )
36 {
37 kruskal_tree->arcs[v1][v2] = graph->arcs[v1][v2];
38 for ( j = 0; j < graph->vertexs; j++ )
39 {
40 if ( visited[j] == vs2 )
41 visited[j] = vs1;
42 }
43 }
44 }
45 }
临街矩阵源码:http://www.cnblogs.com/ITgaozy/p/5200637.html
邻接表的代码实现
17行,if是为了将防止边的重复输入(在邻接矩阵中,点在矩阵中是对称的,所以我们只输入一个上三角中的数据就够了.但在邻接表中,我们如何判断一条边是否已经输入过了? 我的方法是将比当前节点下标大的输入,例如右a,b两个节点,a的节点小与b,我们在输入b的信息时,由于a的节点下标比b小,不输入a-b这条边,因为我们在输入a的信息时,a-b这条边已经输入过了.
1 void kruskal(Graph * graph, Graph * kruskal_tree)
2 {
3 int visited[graph->vertexs];
4 int i, j;
5 Edge edge[graph->brim];
6 int v1, v2, vs1, vs2;
7 Arc_node * cur, * tmp;
8
9 for ( i = 0; i < graph->vertexs; i++ )
10 visited[i] = i;
11
12 for ( i = 0, j = 0; i < graph->vertexs; i++ )
13 {
14 cur = graph->adjlist[i].next;
15 while ( cur != NULL )
16 {
17 if ( cur->pos > i )
18 {
19 edge[j].head = i;
20 edge[j].tail = cur->pos;
21 edge[j].power = cur->distance;
22 j++;
23 }
24 cur = cur->next;
25 }
26 }
27
28 init_kruskal(graph, kruskal_tree);
29 my_sort(edge, graph->brim);
30
31 for ( i = 0; i < graph->brim; i += 1 )
32 {
33 v1 = edge[i].head;
34 v2 = edge[i].tail;
35 vs1 = visited[v1];
36 vs2 = visited[v2];
37 if ( vs1 != vs2 )
38 {
39 if ( kruskal_tree->adjlist[v1].next == NULL )
40 {
41 kruskal_tree->adjlist[v1].next = make_node(v2, edge[i].power);
42 }
43 else
44 {
45 tmp = kruskal_tree->adjlist[v1].next;
46 while ( tmp->next != NULL )
47 tmp = tmp->next;
48 tmp->next = make_node(v2, edge[i].power);
49 }
50 for ( j = 0; j < graph->vertexs; j++ )
51 {
52 if ( visited[j] == vs2 )
53 visited[j] = vs1;
54 }
55 }
56 }
57 }
邻接表源码:http://www.cnblogs.com/ITgaozy/p/5200643.html