更多剑指offer面试习题请点击:《剑指offer》(第二版)题集目录索引
关于二叉树的增删查改:二叉搜索树的基本操作
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。二叉树节点定义如下:
struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
};
要使求链表是有序的,可以借助二叉树中序遍历,因为二叉搜索树的中序遍历访问节点的顺序使从小到大。当遍历访问到根结点时,假设根结点的左侧已经处理好,只需将根结点的m_pLeft
指向上次访问的最近结点(左子树中最大值结点),进而更新当前链表的最后一个结点指针。
BinaryTreeNode* Convert(BinaryTreeNode* pRootOfTree)
{
// 记录链表的尾节点
BinaryTreeNode* pLastNodeInList = nullptr;
// 把二叉树转换成双向链表
ConvertNode(pRootOfTree, &pLastNodeInList);
// 找到双向链表的头结点
BinaryTreeNode* pHeadOfList = pLastNodeInList;
while (pHeadOfList != nullptr && pHeadOfList->m_pLeft != nullptr)
{
pHeadOfList = pHeadOfList->m_pLeft;
}
// 返回双向链表的头结点
return pHeadOfList;
}
void ConvertNode(BinaryTreeNode* pNode, BinaryTreeNode** pLastNodeInList)
{
if (pNode == nullptr)
return;
BinaryTreeNode* pCurrent = pNode;
// 往左子树递归, 从最左节点开始链起
if (pCurrent->m_pLeft != nullptr)
{
ConvertNode(pCurrent->m_pLeft, pLastNodeInList);
}
// 处理当前节点
//将当前节点的左指针指向已经转换好的链表的尾节点
pCurrent->m_pLeft = *pLastNodeInList;
//将已经转换好的链表的尾节点的右指针指向当前节点
if (*pLastNodeInList != nullptr)
{
(*pLastNodeInList)->m_pRight = pCurrent;
}
//更新已经转换好的链表的尾节点
*pLastNodeInList = pCurrent;
// 递归去处理右子树
if (pCurrent->m_pRight != nullptr)
{
ConvertNode(pCurrent->m_pRight, pLastNodeInList);
}
}
void Test(char* testName, BinaryTreeNode* pRootOfTree)
{
if (testName != nullptr)
printf("%s begins:\n", testName);
PrintTree(pRootOfTree);
BinaryTreeNode* pHeadOfList = Convert(pRootOfTree);
PrintDoubleLinkedList(pHeadOfList);
printf("\n================================================================================\n\n");
}
// 10
// / \
// 6 14
// /\ /\
// 4 8 12 16
void Test1()
{
BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
BinaryTreeNode* pNode16 = CreateBinaryTreeNode(16);
ConnectTreeNodes(pNode10, pNode6, pNode14);
ConnectTreeNodes(pNode6, pNode4, pNode8);
ConnectTreeNodes(pNode14, pNode12, pNode16);
Test("Test1", pNode10);
DestroyList(pNode4);
}
// 5
// /
// 4
// /
// 3
// /
// 2
// /
// 1
void Test2()
{
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
ConnectTreeNodes(pNode5, pNode4, nullptr);
ConnectTreeNodes(pNode4, pNode3, nullptr);
ConnectTreeNodes(pNode3, pNode2, nullptr);
ConnectTreeNodes(pNode2, pNode1, nullptr);
Test("Test2", pNode5);
DestroyList(pNode1);
}
// 1
// \
// 2
// \
// 3
// \
// 4
// \
// 5
void Test3()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
ConnectTreeNodes(pNode1, nullptr, pNode2);
ConnectTreeNodes(pNode2, nullptr, pNode3);
ConnectTreeNodes(pNode3, nullptr, pNode4);
ConnectTreeNodes(pNode4, nullptr, pNode5);
Test("Test3", pNode1);
DestroyList(pNode1);
}
// 树中只有1个结点
void Test4()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
Test("Test4", pNode1);
DestroyList(pNode1);
}
// 树中没有结点
void Test5()
{
Test("Test5", nullptr);
}
int main(int argc, char* argv[])
{
Test1();
Test2();
Test3();
Test4();
Test5();
system("pause");
return 0;
}
void PrintDoubleLinkedList(BinaryTreeNode* pHeadOfList)
{
BinaryTreeNode* pNode = pHeadOfList;
printf("\nThe nodes from left to right are:\n");
while (pNode != nullptr)
{
printf("%d\t", pNode->m_nValue);
if (pNode->m_pRight == nullptr)
break;
pNode = pNode->m_pRight;
}
printf("\nThe nodes from right to left are:\n");
while (pNode != nullptr)
{
printf("%d\t", pNode->m_nValue);
if (pNode->m_pLeft == nullptr)
break;
pNode = pNode->m_pLeft;
}
printf("\n");
}
void DestroyList(BinaryTreeNode* pHeadOfList)
{
BinaryTreeNode* pNode = pHeadOfList;
while (pNode != nullptr)
{
BinaryTreeNode* pNext = pNode->m_pRight;
delete pNode;
pNode = pNext;
}
}
BinaryTreeNode* CreateBinaryTreeNode(int value)
{
BinaryTreeNode* NewNode = new BinaryTreeNode;
NewNode->m_nValue = value;
NewNode->m_pLeft = nullptr;
NewNode->m_pRight = nullptr;
return NewNode;
}
void ConnectTreeNodes(BinaryTreeNode *root, BinaryTreeNode *LeftChild, BinaryTreeNode *RightChild)
{
assert(root != nullptr);
root->m_pLeft = LeftChild;
root->m_pRight = RightChild;
}
void PrintTree(BinaryTreeNode* pNode)
{
if (pNode == nullptr)
{
return;
}
PrintTree(pNode->m_pLeft);
printf("%d\t", pNode->m_nValue);
PrintTree(pNode->m_pRight);
}