- 联邦学习 Federated learning Google I/O‘19 笔记
努力搬砖的星期五
笔记联邦学习机器学习机器学习tensorflow
FederatedLearning:MachineLearningonDecentralizeddatahttps://www.youtube.com/watch?v=89BGjQYA0uE文章目录FederatedLearning:MachineLearningonDecentralizeddata1.DecentralizeddataEdgedevicesGboard:mobilekeyboa
- SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记
慘綠青年627
论文阅读笔记深度学习
SAFEFL:MPC-friendlyFrameworkforPrivateandRobustFederatedLearning适用于私有和鲁棒联邦学习的MPC友好框架SAFEFL,这是一个利用安全多方计算(MPC)来评估联邦学习(FL)技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。概述传统机器学习(ML):集中收集数据->隐私保护问题privacy-preservingML(PPML)采
- 探索联邦学习:保护隐私的机器学习新范式
洋葱蚯蚓
机器学习python机器学习人工智能神经网络深度学习算法
探索联邦学习:保护隐私的机器学习新范式前言联邦学习简介联邦学习的原理联邦学习的应用场景联邦学习示例代码结语前言 在数字化浪潮的推动下,我们步入了一个前所未有的数据驱动时代。海量的数据不仅为科学研究、商业决策和日常生活带来了革命性的变化,同时也带来了前所未有的挑战。尤其是数据隐私和安全问题,已经成为全球关注的焦点。 随着对个人隐私保护意识的增强,传统的集中式数据处理方式正逐渐暴露出其局限性。数据
- 网络安全: 模型的脆弱性,鲁棒性和隐私性
不当菜鸡的程序媛
学习记录web安全安全
在网络安全领域,通常描述模型安全性时,会提到以下三个特性:脆弱性(Vulnerability):指模型在某些情况下容易受到攻击或被利用的弱点。例如,模型可能对对抗性攻击或梯度泄露攻击敏感。鲁棒性(Robustness):指模型抵御攻击和在恶劣环境下保持性能的能力。提高模型的鲁棒性是增强其抵御攻击能力的关键。隐私性(Privacy):指保护模型或其训练数据免受信息泄露的能力。隐私性问题在联邦学习和其
- 实践案例|孟宪超:基于隐语深度学习在保险联合定价中的应用(附演讲视频)
隐私开源
“隐语”是开源的可信隐私计算框架,内置MPC、TEE、同态等多种密态计算虚拟设备供灵活选择,提供丰富的联邦学习算法和差分隐私机制。开源项目:https://github.com/secretflowhttps://gitee.com/secretflow演讲实录11月25日,「隐语开源社区Meetup·西安站」顺利举办,本文为大家带来的是蚂蚁集团车险精算平台技术专家孟宪超,在「隐语开源社区Meet
- 【Deep Dive:AI Webinar】联邦学习-数据安金性和隐私性分析的思维转换
开源社
人工智能
【深入探讨人工智能】网络研讨系列总共有17个视频。我们按照视频内容,大致上分成了3个大类:1.人工智能的开放、风险与挑战(4篇)2.人工智能的治理(总共12篇),其中分成了几个子类:a.人工智能的治理框架(3篇)b.人工智能的数据治理(4篇)c.人工智能的许可证(4篇)d.人工智能的法案(1篇)3.炉边对谈-谁在构建开源人工智能?今天发布的是第11个视频,亦即第二个大类别“人工智能的治理”里的第二
- Apache Pulsar 在腾讯 Angel PowerFL 联邦学习平台上的实践
StreamNative
腾讯AngelPowerFL联邦学习平台联邦学习作为新一代人工智能基础技术,通过解决数据隐私与数据孤岛问题,重塑金融、医疗、城市安防等领域。腾讯AngelPowerFL联邦学习平台构建在Angel机器学习平台上,利用Angel-PS支持万亿级模型训练的能力,将很多在Worker上的计算提升到PS(参数服务器)端;AngelPowerFL为联邦学习算法提供了计算、加密、存储、状态同步等基本操作接口,
- 联邦学习-安全树模型 SecureBoost之Desicion Tree
秃顶的码农
联邦学习-安全树模型SecureBoost之DesicionTree1联邦学习背景鉴于数据隐私的重要性,国内外对于数据的保护意识逐步加强。2018年欧盟发布了《通用数据保护条例》(GDPR),我国国家互联网信息办公室起草的《数据安全管理办法(征求意见稿)》因此数据在安全合规的前提下自由流动,成了大势所趋。这些法律法规的出台,不同程度的对人工智能传统处理数据的方式提出更多的挑战。AI高度发展的今天,
- 最新论文笔记(+21):Privacy-Preserving Byzantine-Robust Federated Learning via Blockchain Systems/ TIFS2022
cryptocxf
论文笔记联邦学习论文阅读区块链
Privacy-PreservingByzantine-RobustFederatedLearningviaBlockchainSystems可译为“利用区块链实现隐私保护的拜占庭鲁棒性联邦学习”这篇是今年八月份被TIFS2022(CCFA)收录的文章,写的利用全同态加密和区块链技术解决联邦学习中隐私问题和可信问题(虽然区块链仅仅只是存储的作用,也稍微提了一下)。精读完这篇文章,整体感觉还不错,毕
- pysyft框架中WebsocketClientWorker与WebsocketServerWorker的消息传输
一只特立独行的猫
Pysyft学习笔记pytorch
引言pysyft是基于pytorch的一个联邦学习框架(虽然用起来很难受),通过内存管理实现联邦学习的模拟。在pysyft中,WebsocketServerWorker充当数据的提供方(数据存储方),而WebsocketClientWorker作为数据的使用方(指令提供方),通过WebsocketClientWorker以TCP连接的方式向WebsocketServerWorker请求服务,从而实
- 论文解读-Agglomerative Federated Learning: Empowering Larger Model Training
MCRG
联邦学习学习笔记联邦学习云计算边缘计算机器学习分布式
联邦学习新探:端边云协同引领大模型训练的未来|INFOCOM2024联邦学习(FederatedLearning)就是一种能够在不损害用户隐私的前提下,训练人工智能模型的技术。随着云计算、边缘计算和终端设备的发展,端边云协同(End-Edge-CloudCollaboration)计算范式的出现,为联邦学习算法的实施与部署提供了新的路径。由中国科学院计算技术研究所、中国科学院大学、中关村实验室和北
- 2019年3月18日
真昼之月
醒来时状态很一般。地铁上暂时不想看书,就把灌篮高手的漫画带着翻了一阵子。今天的SQB模式也一如既往地没有出货。上午各种刷reddit摸鱼+水群,期间看群里FIFA视频时还被领导路过了电脑,不得不感叹幸好当时不是在看色图(?)因为有点困所以没下楼吃午饭直接睡觉,睡醒之后才下楼买零食充饥。下午看了会儿keras的文档,感觉还是欠缺实战,这一点还是得依赖kaggle?之后开虚拟机打算研究一下联邦学习,结
- 我的隐私计算学习——联邦学习(3)
Atara8088
学习密码学安全人工智能同态加密
本篇笔记主要是根据这位老师的知识分享整理而成【公众号:秃顶的码农】,我从他的资料里学到了很多,期间还私信询问了一些困惑,都得到了老师详细的答复,相当nice!(五)纵向联邦学习—安全树思路可以通过以下脉络学习:决策树--------->集成方法Bagging&Boosting--------->GBDT--------->XGBoost--------->SecureBoostTree这个版块的内
- 我的隐私计算学习——联邦学习(4)
Atara8088
学习密码学安全人工智能
本篇笔记部分内容来源于这位老师的知识分享【公众号:秃顶的码农】,我从他的资料里学到了很多,期间还私信询问了一些困惑,都得到了老师详细的答复,相当nice!(六)横向联邦学习—梯度更新聚合云端数据中心的分布式机器学习可以有成百上千的节点,对比横向联邦学习有一定的借鉴意义,都存在着节点更新的同步与异步的问题,节点梯度更新之后的问题、节点掉线的问题、数据的NonIID问题,但是横向联邦学习的场景更加复杂
- 我的隐私计算学习——联邦学习(5)
Atara8088
学习人工智能密码学安全
笔记内容来自多本书籍、学术资料、白皮书及ChatGPT等工具,经由自己阅读后整理而成。(七)联邦迁移学习相关研究表明,联邦迁移学习不需要主服务器作为各参与方间的协调者,旨在让模型具备举一反三能力,在各参与方样本空间以及特征空间均存在较少交叉信息的情况下,使用迁移学习算法互助地构建模型,可解决标签样本少和数据集不足的问题,例如,某国电商平台与其他国家银行间的数据迁移场景,联邦迁移学习可以很好地解决数
- 全同态加密的硬件加速:让机器学习更懂隐私保护
PrimiHub
同态加密机器学习区块链密码学可信计算技术
PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。问题:保护敏感数据企业机构间合作处理数据越来越频繁,通常使用云服务为数据共享保驾护航。保护数据隐私至关重要,特别是在处理个人可识别信息(PII)、个人健康信息(PHI)、知识产权和情报洞察等敏感数据时。数据有三种基本状态:静态、传输和使用。通常情况下,敏感数据在存储
- 2024年深圳市工业和信息化局软件产业高质量发展技术创新体系扶持计划产业链关键环节提升项目申请指南
高新技术企业认定条件
项目政策大数据
一、资助的项目类别软件企业围绕大数据、云计算、区块链、信息安全、数字孪生等软件产业重点发展方向,组织实施经济社会效益显著、主要性能指标取得突破的新产品应用推广项目。(一)大数据:重点支持数据采集、数据清洗、数据分析发掘、数据可视化、大数据行业应用、联邦学习、隐私计算等领域。(二)云计算:重点支持平台即服务(PaaS)、软件即服务(SaaS)等领域。(三)区块链:重点支持区块链底层平台建设,以及在金
- 联邦学习:密码学 + 机器学习 + 分布式 实现隐私计算,破解医学界数据孤岛的长期难题
Debroon
医学视觉#AI安全#机器学习深度学习
联邦学习:密码学+机器学习+分布式提出背景:数据不出本地,又能合力干大事联邦学习的问题联邦学习架构分布式机器学习:解决大数据量处理的问题横向联邦学习:解决跨多个数据源学习的问题纵向联邦学习:解决数据分散在多个参与者但部分特征重叠的问题联邦+迁移学习:结合联邦学习和迁移学习,不同任务间共享知识,同时保持数据隐私医疗+联邦学习:跨多个医疗机构共享模型学习,同时保护患者隐私大模型+联邦学习提出背景:数据
- 阿里巴巴开源联邦学习框架FederatedScope
魏铁锤爱摸鱼
开源
5月5日,阿里巴巴达摩院发布新型联邦学习框架FederatedScope,声称可以在不共享训练数据的情况下开发机器学习算法,从而保护隐私。,其源代码现已在Apache2.0许可下发布在GitHub上。介绍该平台被描述为一个全面的联邦学习框架,为学术界和工业界的各种机器学习任务提供灵活的定制。它还被声称易于掌握,允许用户集成自己的组件,包括特定应用程序的数据集和模型。联邦学习,顾名思义,是一种跨多个
- 联邦学习框架:FedAdapt: Adaptive Offloading for IoT Devices in Federated Learning 框架的部署实现
我要 成果
边缘计算边缘智能框架联邦学习centos通信协同推理
目录虚拟机的安装简化版(三台)环境配置安装Anaconda创建环境安装pytorch关闭防火墙代码代码下载数据集下载代码修改上传到虚拟机虚拟机测试修改虚拟机的主机名运行FedAdapt是一个全面的物联网边缘环境的框架,克服了加速联合学习资源有限的设备上的挑战,减少散兵游勇所产生的物联网设备的计算异质性和适应不同的设备和边缘服务器之间的网络带宽的影响。虚拟机的安装简化版(三台)三台centos7虚拟
- 联邦学习论文阅读:Federated collaborative filtering
thormas1996
联邦学习联邦学习论文阅读
今年一月刚挂上arXiv的一篇联邦推荐文章Federatedcollaborativefilteringforprivacy-preservingpersonalizedrecommendationsystem。摘要作者将一个隐形反馈的CF模型修改成了联邦学习的框架,隐私性用Fed-Avg算法保证。总的来说,没什么创新。问题在保护用户隐私的情况下利用隐性反馈进行推荐框架一个横向联邦的框架,和goo
- 边缘计算和联邦学习的联系
slomay
边缘计算经验分享
1.什么是边缘计算?边缘计算(EdgeComputing)是一种计算模型,其主要思想是将计算、存储和数据处理能力推送到离数据源近的边缘设备,而不是依赖于远程的云服务器。这样做的目的是减少数据传输延迟、提高响应速度,同时降低对云计算中心的依赖性。边缘计算通常在物理临近设备的位置进行数据处理,以满足实时性、安全性和隐私性的要求。例如:考虑一个城市的智能监控摄像头系统,用于监测交通、公共场所和安全状况。
- 高级分布式系统-第15讲 分布式机器学习--联邦学习
十有久诚
分布式机器学习人工智能高级分布式系统神经网络
联邦学习两种常见的架构:客户-服务器架构和对等网络架构联邦学习在传统的分布式机器学习基础上的变化。传统的分布式机器学习:在数据中心或计算集群中使用并行训练,因为有高速通信连接,所以通信开销相对很小,计算开销将会占主导地位。联邦学习:通信需要依靠互联网,甚至是无线网络,所以通信代价是占主导地位的。减少通信轮次的方法增加并行度:加入更多的参与方,让它们在通信轮次间各自独立地进行模型训练。增加每一个
- 【论文阅读】异构联邦学习综述:最新进展与研究挑战
鸿鹄一夏
论文笔记机器学习人工智能
目录前言Background什么是联邦学习什么是异构联邦学习AbstractIntroductionSurveyResearchChallenges(研究挑战)StatisticalHeterogeneity(数据异质性)ModelHeterogeneity(模型异质性)ComuunicationHeterogeneity(通信异质性)DeviceHeterogeneity(设备异质性)State
- 分裂联邦学习论文-混合联邦分裂学习GAN驱动的预测性多目标优化
梦灯
人工智能论文EdgeAI生成对抗网络人工智能机器学习
论文标题:《PredictiveGAN-PoweredMulti-ObjectiveOptimizationforHybridFederatedSplitLearning》期刊:IEEETransactionsonCommunications,2023一、论文介绍背景:联邦学习作为一种多设备协同训练的边缘智能算法,可以保护数据隐私,但增加了无线设备的计算负担。模型:为了解决上述问题,我们提出了一种
- 使用MistNet在COCO128数据集上协作训练Yolo-v5
星星失眠️
联邦学习YOLOpython人工智能
本案例介绍如何在MNIST手写数字分类场景中,使用名为MistNet的聚合算法训练联邦学习作业。数据分散在不同的地方(如边缘节点、摄像头等),由于数据隐私和带宽的原因,无法在服务器上聚合。因此,我们不能将所有数据都用于训练。在某些情况下,边缘节点的计算资源有限,甚至没有训练能力。边缘无法从训练过程中获取更新的权重。因此,传统算法(例如,联合平均算法)通常聚合由不同边缘客户端训练的更新权重,在这种情
- 迈向可持续人工智能:通过拍卖实现云边缘系统中的联邦学习需求响应
zhy2267291213
人工智能
(原文:TowardSustainableAI:FederatedLearningDemandResponseinCloud-EdgeSystemsviaAuctions)摘要:云边缘系统时紧急需求响应EDR的重要参与者,有助于维持电网稳定和供需平衡。然而,UI这用户越来越多的在云边缘系统中执行人工智能工作负载,现有的ERD管理并不是针对al工作负载而设计的,因此面临着能源消耗和al模型准确性之间
- 联邦学习的联合参与激励和网络定价设计
zhy2267291213
网络机器学习人工智能
(原文:JointParticipationIncentiveandNetworkPricingDesignforFederatedLearning)摘要:由于当大量用户通过联邦学习训练大型机器学习模型时,动态变化且通常繁重的通信开销会给网络运营商带来巨大压力。运营商可能会选择动态改变网络价格作为响应,这最终将影响服务器和用户的收益。本文考虑了参与激励(用于鼓励用户对联邦学习的贡献)和网络定价(用
- 零知识证明的最新发展和应用
PrimiHub
零知识证明区块链密码学可信计算技术同态加密github
PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。当企业收集大量客户数据去审查、改进产品和服务以及将数据资产货币化时,他们容易受到网络攻击威胁,造成数据泄露。数据泄露的损失每年都在上升,每次泄露平均造成损失420万美元,如下图所示,它们严重损害了企业的声誉和可信度。数据泄露的成本零知识证明(ZKPs)等隐私增强技术
- 2024年1月10日最热AI论文Top5:DebugBench、AI智能体对齐、开放域问答系统、谈判游戏、联邦学习
夕小瑶
人工智能计算机视觉自然语言处理大模型chatgpt
本文整理了今日发表在ArXiv上的AI论文中最热门的TOP5。论文热度排序、论文标签、中文标题、推荐理由和论文摘要均由赛博马良平台(saibomaliang.com)上的智能体「AI论文解读达人」提供。如需查看其他热门论文,欢迎移步saibomaliang.com^_^TOP1DebugBench:EvaluatingDebuggingCapabilityofLargeLanguageModels
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&