本文由网络资料整理而来,如有问题,欢迎指正!
参考链接:维基百科-排序算法
// 排序原始数据
private static final int[] NUMBERS =
{49, 38, 65, 97, 76, 13, 27, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51};
插入排序 是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
public static void insertSort(int[] array) {
for (int i = 1; i < array.length; i++) {
int temp = array[i];
int j = i - 1;
for (; j >= 0 && array[j] > temp; j--) {
//将大于temp的值整体后移一个单位
array[j + 1] = array[j];
}
array[j + 1] = temp;
}
System.out.println(Arrays.toString(array) + " insertSort");
}
希尔排序 也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
public static void shellSort(int[] array) {
int i;
int j;
int temp;
int gap = 1;
int len = array.length;
while (gap < len / 3) { gap = gap * 3 + 1; }
for (; gap > 0; gap /= 3) {
for (i = gap; i < len; i++) {
temp = array[i];
for (j = i - gap; j >= 0 && array[j] > temp; j -= gap) {
array[j + gap] = array[j];
}
array[j + gap] = temp;
}
}
System.out.println(Arrays.toString(array) + " shellSort");
}
选择排序 是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对个元素的表进行排序总共进行至多次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。
public static void selectSort(int[] array) {
int position = 0;
for (int i = 0; i < array.length; i++) {
int j = i + 1;
position = i;
int temp = array[i];
for (; j < array.length; j++) {
if (array[j] < temp) {
temp = array[j];
position = j;
}
}
array[position] = array[i];
array[i] = temp;
}
System.out.println(Arrays.toString(array) + " selectSort");
}
堆排序 是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。
public static void heapSort(int[] array) {
/*
* 第一步:将数组堆化
* beginIndex = 第一个非叶子节点。
* 从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。
* 叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。
*/
int len = array.length - 1;
int beginIndex = (len - 1) >> 1;
for (int i = beginIndex; i >= 0; i--) {
maxHeapify(i, len, array);
}
/*
* 第二步:对堆化数据排序
* 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。
* 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。
* 直至未排序的堆长度为 0。
*/
for (int i = len; i > 0; i--) {
swap(0, i, array);
maxHeapify(0, i - 1, array);
}
System.out.println(Arrays.toString(array) + " heapSort");
}
private static void swap(int i, int j, int[] arr) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
/**
* 调整索引为 index 处的数据,使其符合堆的特性。
*
* @param index 需要堆化处理的数据的索引
* @param len 未排序的堆(数组)的长度
*/
private static void maxHeapify(int index, int len, int[] arr) {
int li = (index << 1) + 1; // 左子节点索引
int ri = li + 1; // 右子节点索引
int cMax = li; // 子节点值最大索引,默认左子节点。
if (li > len) {
return; // 左子节点索引超出计算范围,直接返回。
}
if (ri <= len && arr[ri] > arr[li]) // 先判断左右子节点,哪个较大。
{ cMax = ri; }
if (arr[cMax] > arr[index]) {
swap(cMax, index, arr); // 如果父节点被子节点调换,
maxHeapify(cMax, len, arr); // 则需要继续判断换下后的父节点是否符合堆的特性。
}
}
冒泡排序 是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
public static void bubbleSort(int[] array) {
int temp = 0;
for (int i = 0; i < array.length - 1; i++) {
for (int j = 0; j < array.length - 1 - i; j++) {
if (array[j] > array[j + 1]) {
temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;
}
}
}
System.out.println(Arrays.toString(array) + " bubbleSort");
}
快速排序 又称划分交换排序,简称快排,一种排序算法,最早由东尼·霍尔提出。在平均状况下,排序个项目要(大O符号)次比较。在最坏状况下则需要次比较,但这种状况并不常见。事实上,快速排序通常明显比其他算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地达成。
public static void quickSort(int[] array) {
_quickSort(array, 0, array.length - 1);
System.out.println(Arrays.toString(array) + " quickSort");
}
private static int getMiddle(int[] list, int low, int high) {
int tmp = list[low]; //数组的第一个作为中轴
while (low < high) {
while (low < high && list[high] >= tmp) {
high--;
}
list[low] = list[high]; //比中轴小的记录移到低端
while (low < high && list[low] <= tmp) {
low++;
}
list[high] = list[low]; //比中轴大的记录移到高端
}
list[low] = tmp; //中轴记录到尾
return low; //返回中轴的位置
}
private static void _quickSort(int[] list, int low, int high) {
if (low < high) {
int middle = getMiddle(list, low, high); //将list数组进行一分为二
_quickSort(list, low, middle - 1); //对低字表进行递归排序
_quickSort(list, middle + 1, high); //对高字表进行递归排序
}
}
归并排序 是创建在归并操作上的一种有效的排序算法,效率为(大O符号)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。
public static void mergingSort(int[] array) {
sort(array, 0, array.length - 1);
System.out.println(Arrays.toString(array) + " mergingSort");
}
private static void sort(int[] data, int left, int right) {
if (left < right) {
//找出中间索引
int center = (left + right) / 2;
//对左边数组进行递归
sort(data, left, center);
//对右边数组进行递归
sort(data, center + 1, right);
//合并
merge(data, left, center, right);
}
}
private static void merge(int[] data, int left, int center, int right) {
int[] tmpArr = new int[data.length];
int mid = center + 1;
//third记录中间数组的索引
int third = left;
int tmp = left;
while (left <= center && mid <= right) {
//从两个数组中取出最小的放入中间数组
if (data[left] <= data[mid]) {
tmpArr[third++] = data[left++];
} else {
tmpArr[third++] = data[mid++];
}
}
//剩余部分依次放入中间数组
while (mid <= right) {
tmpArr[third++] = data[mid++];
}
while (left <= center) {
tmpArr[third++] = data[left++];
}
//将中间数组中的内容复制回原数组
while (tmp <= right) {
data[tmp] = tmpArr[tmp++];
}
}
基数排序 是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
public static void radixSort(int[] array) {
//首先确定排序的趟数;
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
}
int time = 0;
//判断位数;
while (max > 0) {
max /= 10;
time++;
}
//建立10个队列;
ArrayList> queue = new ArrayList<>();
for (int i = 0; i < 10; i++) {
ArrayList queue1 = new ArrayList<>();
queue.add(queue1);
}
//进行time次分配和收集;
for (int i = 0; i < time; i++) {
//分配数组元素;
for (int anArray : array) {
//得到数字的第time+1位数;
int x = anArray % (int)Math.pow(10, i + 1) / (int)Math.pow(10, i);
ArrayList queue2 = queue.get(x);
queue2.add(anArray);
queue.set(x, queue2);
}
int count = 0;//元素计数器;
//收集队列元素;
for (int k = 0; k < 10; k++) {
while (queue.get(k).size() > 0) {
ArrayList queue3 = queue.get(k);
array[count] = queue3.get(0);
queue3.remove(0);
count++;
}
}
}
System.out.println(Arrays.toString(array) + " radixSort");
}
结果