浅析Android字体加载原理

浅析Android字体加载原理

前言

   之前在处理系统字体问题的时候,可借鉴的资料很少,遇到了很多坑,不得不了解Android字体加载原理,现抽空写一篇总结,来加深自己对这块的理解。

内容

概述

   Android字体系统是由底层的Android 2D图形引擎Skia来实现的,Android3.0之后逐渐使用了新的硬件绘图模块hwui,在5.0之后正式取代了Skia,因此不同版本的系统其字体加载机制有些差异,按照Google的API Level来看,大体可以分为三个阶段:

  1. Android4.0以下的系统
  2. Android4.0到Android4.4的系统
  3. Android5.0以上的系统

   当然这每个阶段中,可能也存在些许小差异,但大方向是没变化的,本文主要对Android5.0以上的系统的字体加载机制进行描述,围绕系统字体配置文件解析与字体加载相关内容,不涉及系统运行库的实现细节。

注:浏览器及webView中的字体有单独的字体系统

   下面将从Java层面、Native层面、文件配置系统三个部分来阐述Android字体加载原理。

Java层面

   有研究过Android的人大概都有了解,Android的Java层封装了构建应用程序时可能会用到的各种Api。而在字体这部分,起主要作用的是android.graphics.Typeface,其主要负责字体加载以及对上层提供创建字体功能的调用,下面将着重分析该类的调用过程。

   首先,在Android启动的过程中,ZygoteInit类中的main()方法会调用加载方法preload(),对各种类、链接库、资源等进行初始化,具体代码如下:


public static void main(String argv[]) {
    ...

    registerZygoteSocket(socketName);
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "ZygotePreload");
    EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
        SystemClock.uptimeMillis());
    //调用加载方法
    preload();
    EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
        SystemClock.uptimeMillis());
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);

    ...

}

//主要用于加载并初始化各种类、链接库、资源等。
static void preload() {
    Log.d(TAG, "begin preload");
    //Systrace开始tag
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "BeginIcuCachePinning");
    //开始Icu缓存开销
    beginIcuCachePinning();
    //Systrace结束tag
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadClasses");
    //预加载Classes
    preloadClasses();
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadResources");
    //预加载resources
    preloadResources();
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
    Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadOpenGL");
    //预加载openGL
    preloadOpenGL();
    Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
    //加载分享库
    preloadSharedLibraries();
    //加载文本资源
    preloadTextResources();
    // Ask the WebViewFactory to do any initialization that must run in the zygote process,
    // for memory sharing purposes.、
    WebViewFactory.prepareWebViewInZygote();
    endIcuCachePinning();
    warmUpJcaProviders();
    Log.d(TAG, "end preload");
}

   其中preloadClasses()方法会加载并初始化一些系统常用的API类,这些类都是位于frameworks/base/preloaded-classes文件中,当然也包括Typeface类。

/**
 * Performs Zygote process initialization. Loads and initializes
 * commonly used classes.
 *
 * Most classes only cause a few hundred bytes to be allocated, but
 * a few will allocate a dozen Kbytes (in one case, 500+K).
 */
private static void preloadClasses() {

    ...    

    InputStream is;
    try {
        is = new FileInputStream(PRELOADED_CLASSES);
    } catch (FileNotFoundException e) {
        Log.e(TAG, "Couldn't find " + PRELOADED_CLASSES + ".");
        return;
    }

    ...

    try {
    BufferedReader br
        = new BufferedReader(new InputStreamReader(is), 256);

    int count = 0;
    String line;
    while ((line = br.readLine()) != null) {
        // Skip comments and blank lines.
        line = line.trim();
        if (line.startsWith("#") || line.equals("")) {
            continue;
        }

        Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadClass " + line);
        try {
            if (false) {
                Log.v(TAG, "Preloading " + line + "...");
            }
            // Load and explicitly initialize the given class. Use
            // Class.forName(String, boolean, ClassLoader) to avoid repeated stack lookups
            // (to derive the caller's class-loader). Use true to force initialization, and
            // null for the boot classpath class-loader (could as well cache the
            // class-loader of this class in a variable).
            Class.forName(line, true, null);
            count++;

    ...

}

   从上面的代码可以看到,Android通过反射机制Class.forName(“android.graphics.Typeface”)加载了Typeface类,在加载的同时,会调用类中的static方法块。如下:


static {
    //初始化系统字体
    init();
    // Set up defaults and typefaces exposed in public API
    DEFAULT         = create((String) null, 0);
    DEFAULT_BOLD    = create((String) null, Typeface.BOLD);
    SANS_SERIF      = create("sans-serif", 0);
    SERIF           = create("serif", 0);
    MONOSPACE       = create("monospace", 0);

    sDefaults = new Typeface[] {
        DEFAULT,
        DEFAULT_BOLD,
        create((String) null, Typeface.ITALIC),
        create((String) null, Typeface.BOLD_ITALIC),
    };
}

public static Typeface create(String familyName, int style) {
    if (sSystemFontMap != null) {
        return create(sSystemFontMap.get(familyName), style);
    }
    return null;
}

public static Typeface create(Typeface family, int style) {

    ...

    typeface = new Typeface(nativeCreateFromTypeface(ni, style));

    ...
    return typeface;
}

   在上面的static方法块中,最终通过调用Native层方法nativeCreateFromTypeface(),来初始化系统字体并且设置默认的系统字体以及字体样式,可以从上面的方法看出系统默认创建sans-serif(无衬线字体),serif(衬线字体),monospace(等宽字体)三种字体,并且通过create第一个参数为null,来创建默认字体的四种style:normal,bold,italic,bolditalic。

注:这里需要注意的是,Android4.x版本的系统与Android5.0以上的版本所调用的API基本一致,但是native层确有很大的变,这是由于5.0以上的系统添加了一个新的方法init(),其主要实现了解析系统字体配置文件,并据此加载系统字体。而Android4.x版本是在native层实现的。

   因为现在Android阵营已经基本上都是5.0以上的系统了,所以5.0以下版本的加载不在解释。下面我们来看init()方法的具体逻辑:


/*
 * (non-Javadoc)
 *
 * This should only be called once, from the static class initializer block.
 */
private static void init() {
    // Load font config and initialize Minikin state
    //获取系统字体配置文件位置放置于system/etc目录下
    File systemFontConfigLocation = getSystemFontConfigLocation();
    //获取配置文件fonts.xml
    File configFilename = new File(systemFontConfigLocation, FONTS_CONFIG);
    //以下代码是对fonts.xml的解析,即是对系统字体的解析
    try {
        FileInputStream fontsIn = new FileInputStream(configFilename);
        FontListParser.Config fontConfig = FontListParser.parse(fontsIn);

        Map bufferForPath = new HashMap();
        //用来承载fonts.xml中的每个family节点
        List familyList = new ArrayList();
        // Note that the default typeface is always present in the fallback list;
        // this is an enhancement from pre-Minikin behavior.
        //从每个family节点中解析字体样式,这里解析系统默认字体
        for (int i = 0; i < fontConfig.families.size(); i++) {
            FontListParser.Family f = fontConfig.families.get(i);
            if (i == 0 || f.name == null) {
                familyList.add(makeFamilyFromParsed(f, bufferForPath));
            }
        }
        //系统默认字体集合
        sFallbackFonts = familyList.toArray(new FontFamily[familyList.size()]);
        //设置默认系统字体
        setDefault(Typeface.createFromFamilies(sFallbackFonts));
        //这里加载系统字体,包括默认字体
        Map systemFonts = new HashMap();
        for (int i = 0; i < fontConfig.families.size(); i++) {
            Typeface typeface;
            FontListParser.Family f = fontConfig.families.get(i);
            if (f.name != null) {
                if (i == 0) {
                    // The first entry is the default typeface; no sense in
                    // duplicating the corresponding FontFamily.
                    typeface = sDefaultTypeface;
                } else {
                    //从每个family节点中解析字体
                    FontFamily fontFamily = makeFamilyFromParsed(f, bufferForPath);
                    FontFamily[] families = { fontFamily };
                    typeface = Typeface.createFromFamiliesWithDefault(families);
                }
                //解析的字体添加到系统字体中
                systemFonts.put(f.name, typeface);
            }
        }
        //通过权重别号解析字体,别名必须与字体对应
        for (FontListParser.Alias alias : fontConfig.aliases) {
            Typeface base = systemFonts.get(alias.toName);
            Typeface newFace = base;
            int weight = alias.weight;
            if (weight != 400) {
                newFace = new Typeface(nativeCreateWeightAlias(base.native_instance, weight));
            }
            systemFonts.put(alias.name, newFace);
        }
        //系统字体集合
        sSystemFontMap = systemFonts;

    } catch (RuntimeException e) {
        Log.w(TAG, "Didn't create default family (most likely, non-Minikin build)", e);
        // TODO: normal in non-Minikin case, remove or make error when Minikin-only
    } catch (FileNotFoundException e) {
        Log.e(TAG, "Error opening " + configFilename, e);
    } catch (IOException e) {
        Log.e(TAG, "Error reading " + configFilename, e);
    } catch (XmlPullParserException e) {
        Log.e(TAG, "XML parse exception for " + configFilename, e);
    }
}

   通过以上代码,可以看出,系统解析过程中,一共有三种字体模式。一种的是系统默认字体;一种是系统字体,所有字体,包括自己添加的字体;一种是设置别名的字体,字体的衍生。而这三种字体都会在init()中被加载,而它们加载主要涉及以下方法。


//通过family节点解析FontFamily
private static FontFamily makeFamilyFromParsed(FontListParser.Family family,
        Map bufferForPath) {
    //这里的lang表示国家缩写,variant表示字体的排列格式一般有compact与elegant两种
    FontFamily fontFamily = new FontFamily(family.lang, family.variant);
    for (FontListParser.Font font : family.fonts) {
        ByteBuffer fontBuffer = bufferForPath.get(font.fontName);
        if (fontBuffer == null) {
            try (FileInputStream file = new FileInputStream(font.fontName)) {
                FileChannel fileChannel = file.getChannel();
                long fontSize = fileChannel.size();
                fontBuffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fontSize);
                bufferForPath.put(font.fontName, fontBuffer);
            } catch (IOException e) {
                Log.e(TAG, "Error mapping font file " + font.fontName);
                continue;
            }
        }
        if (!fontFamily.addFontWeightStyle(fontBuffer, font.ttcIndex, font.axes,
                font.weight, font.isItalic)) {
            Log.e(TAG, "Error creating font " + font.fontName + "#" + font.ttcIndex);
        }
    }
    return fontFamily;
}
/*
以下是通过不同的格式解析出不同的family
*/
public FontFamily() {
    mNativePtr = nCreateFamily(null, 0);
    if (mNativePtr == 0) {
        throw new IllegalStateException("error creating native FontFamily");
    }
}

public FontFamily(String lang, String variant) {
    int varEnum = 0;
    if ("compact".equals(variant)) {
        varEnum = 1;
    } else if ("elegant".equals(variant)) {
        varEnum = 2;
    }
    mNativePtr = nCreateFamily(lang, varEnum);
    if (mNativePtr == 0) {
        throw new IllegalStateException("error creating native FontFamily");
    }
}

@Override
protected void finalize() throws Throwable {
    try {
        nUnrefFamily(mNativePtr);
    } finally {
        super.finalize();
    }
}

public boolean addFont(String path, int ttcIndex) {
    try (FileInputStream file = new FileInputStream(path)) {
        FileChannel fileChannel = file.getChannel();
        long fontSize = fileChannel.size();
        ByteBuffer fontBuffer = fileChannel.map(FileChannel.MapMode.READ_ONLY, 0, fontSize);
        return nAddFont(mNativePtr, fontBuffer, ttcIndex);
    } catch (IOException e) {
        Log.e(TAG, "Error mapping font file " + path);
        return false;
    }
}

public boolean addFontWeightStyle(ByteBuffer font, int ttcIndex, List axes,
        int weight, boolean style) {
    return nAddFontWeightStyle(mNativePtr, font, ttcIndex, axes, weight, style);
}

public boolean addFontFromAsset(AssetManager mgr, String path) {
    return nAddFontFromAsset(mNativePtr, mgr, path);
}

private static native long nCreateFamily(String lang, int variant);
private static native void nUnrefFamily(long nativePtr);
private static native boolean nAddFont(long nativeFamily, ByteBuffer font, int ttcIndex);
private static native boolean nAddFontWeightStyle(long nativeFamily, ByteBuffer font,
        int ttcIndex, List listOfAxis,
        int weight, boolean isItalic);
private static native boolean nAddFontFromAsset(long nativeFamily, AssetManager mgr,
        String path);

/**
 * Create a new typeface from an array of font families.
 *
 * @param families array of font families
 * @hide
 */
//通过FontFamily解析创建字体
public static Typeface createFromFamilies(FontFamily[] families) {
    long[] ptrArray = new long[families.length];
    for (int i = 0; i < families.length; i++) {
        ptrArray[i] = families[i].mNativePtr;
    }
    return new Typeface(nativeCreateFromArray(ptrArray));
}

/**
 * Create a new typeface from an array of font families, including
 * also the font families in the fallback list.
 *
 * @param families array of font families
 * @hide
 */
//通过FontFamily解析创建字体
public static Typeface createFromFamiliesWithDefault(FontFamily[] families) {
    long[] ptrArray = new long[families.length + sFallbackFonts.length];
    for (int i = 0; i < families.length; i++) {
        ptrArray[i] = families[i].mNativePtr;
    }
    for (int i = 0; i < sFallbackFonts.length; i++) {
        ptrArray[i + families.length] = sFallbackFonts[i].mNativePtr;
    }
    return new Typeface(nativeCreateFromArray(ptrArray));
}

   从上面的代码可看到,系统通过解析/system/etc/fonts.xml(字体配置文件),然后接收Native层方法回调上来的值,来创建指定的Typeface即字体,保存在sSystemFontMap中。而相关native方法列表以及注册(在frameworks/base/core/jni/android/graphics/Typeface.cpp中注册)如下:


private static native long nativeCreateFromTypeface(long native_instance, int style);
private static native long nativeCreateWeightAlias(long native_instance, int weight);
private static native void nativeUnref(long native_instance);
private static native int  nativeGetStyle(long native_instance);
private static native long nativeCreateFromArray(long[] familyArray);
private static native void nativeSetDefault(long native_instance);

///////////////////////////////////////////////////////////////////////////////

static const JNINativeMethod gTypefaceMethods[] = {
    { "nativeCreateFromTypeface", "(JI)J", (void*)Typeface_createFromTypeface },
    { "nativeCreateWeightAlias",  "(JI)J", (void*)Typeface_createWeightAlias },
    { "nativeUnref",              "(J)V",  (void*)Typeface_unref },
    { "nativeGetStyle",           "(J)I",  (void*)Typeface_getStyle },
    { "nativeCreateFromArray",    "([J)J",
                                           (void*)Typeface_createFromArray },
    { "nativeSetDefault",         "(J)V",   (void*)Typeface_setDefault },
};

int register_android_graphics_Typeface(JNIEnv* env)
{
    return RegisterMethodsOrDie(env, "android/graphics/Typeface", gTypefaceMethods,
                                NELEM(gTypefaceMethods));
}

   最终,通过这一层的关系,调用到Native层的方法。

   到此,字体加载Java层面就结束了,下面将调用Native层的方法。

Native层面

   Native层主要是skia图形引擎的Android移植版,项目源码位于external\skia目录下。

   在Android4.X版本中主要是用skia来进行软件绘制,所以解析配置文件并加载字体是在skia中完成,这里不在描述过程,可以参看相关博客中的描述。而由于绘制性能等问题,Android5.0之后使用了新的硬件绘图模块hwui,hwui主要则是使用opengles来进行gpu硬件绘图,提升整个系统的绘制性能。

   在上述Java层调用过程后,字体加载指向了Native层。在Native层调用首先进入jni/android/graphics/Typeface.cpp,调用对应的方法,然后进入hwui/Typeface.h和hwui/Typeface.cpp中定制的函数,从而解析配置文件并加载字体。

//jni/android/graphics/Typeface.cpp

#include "jni.h"
#include "core_jni_helpers.h"

#include "GraphicsJNI.h"
#include "ScopedPrimitiveArray.h"
#include "SkTypeface.h"
#include 
#include 
#include 

using namespace android;

static jlong Typeface_createFromTypeface(JNIEnv* env, jobject, jlong familyHandle, jint style) {
    Typeface* family = reinterpret_cast(familyHandle);
    Typeface* face = Typeface::createFromTypeface(family, (SkTypeface::Style)style);
    // TODO: the following logic shouldn't be necessary, the above should always succeed.
    // Try to find the closest matching font, using the standard heuristic
    if (NULL == face) {
        face = Typeface::createFromTypeface(family, (SkTypeface::Style)(style ^ SkTypeface::kItalic));
    }
    for (int i = 0; NULL == face && i < 4; i++) {
        face = Typeface::createFromTypeface(family, (SkTypeface::Style)i);
    }
    return reinterpret_cast(face);
}

static jlong Typeface_createWeightAlias(JNIEnv* env, jobject, jlong familyHandle, jint weight) {
    Typeface* family = reinterpret_cast(familyHandle);
    Typeface* face = Typeface::createWeightAlias(family, weight);
    return reinterpret_cast(face);
}

static void Typeface_unref(JNIEnv* env, jobject obj, jlong faceHandle) {
    Typeface* face = reinterpret_cast(faceHandle);
    if (face != NULL) {
        face->unref();
    }
}

static jint Typeface_getStyle(JNIEnv* env, jobject obj, jlong faceHandle) {
    Typeface* face = reinterpret_cast(faceHandle);
    return face->fSkiaStyle;
}

static jlong Typeface_createFromArray(JNIEnv *env, jobject, jlongArray familyArray) {
    ScopedLongArrayRO families(env, familyArray);
    std::vector familyVec;
    for (size_t i = 0; i < families.size(); i++) {
        FontFamily* family = reinterpret_cast(families[i]);
        familyVec.push_back(family);
    }
    return reinterpret_cast(Typeface::createFromFamilies(familyVec));
}

static void Typeface_setDefault(JNIEnv *env, jobject, jlong faceHandle) {
    Typeface* face = reinterpret_cast(faceHandle);
    return Typeface::setDefault(face);
}
//hwui/Typeface.h

#ifndef _ANDROID_GRAPHICS_TYPEFACE_IMPL_H_
#define _ANDROID_GRAPHICS_TYPEFACE_IMPL_H_

#include "SkTypeface.h"

#include 
#include 
#include 

namespace android {

struct ANDROID_API Typeface {
    FontCollection *fFontCollection;

    // style used for constructing and querying Typeface objects
    SkTypeface::Style fSkiaStyle;
    // base weight in CSS-style units, 100..900
    int fBaseWeight;

    // resolved style actually used for rendering
    FontStyle fStyle;

    void unref();

    static Typeface* resolveDefault(Typeface* src);

    static Typeface* createFromTypeface(Typeface* src, SkTypeface::Style style);

    static Typeface* createWeightAlias(Typeface* src, int baseweight);

    static Typeface* createFromFamilies(const std::vector& families);

    static void setDefault(Typeface* face);
};
}
#endif  // _ANDROID_GRAPHICS_TYPEFACE_IMPL_H_

   Native层的c/c++方法调用比较复杂,通过一系列的调用,返回值给Java层,这里就不在阐述,有兴趣的人可以自己下个源码深入理解下,到这里Android的字体加载原理基本完成了,不得不感叹Google工程师的丰功伟绩。

文件配置系统

   前面介绍的是加载的原理,现在简单的描述下字体加载过程中所用到的字体加载文件。

   在4.x版本的系统字体配置文件位于system/etc/system_fonts.xml,备用字体配置文件位于system/etc/fallback_fonts.xml和vendor/etc/fallback_fonts.xml。而5.0以上的版本的系统字体及备用字体配置均位于system/etc/fonts.xml文件中,下面展示部分fonts.xml内容。


<familyset version="22">
    
    <family name="sans-serif">
        <font weight="100" style="normal">Roboto-Thin.ttffont>
        <font weight="100" style="italic">Roboto-ThinItalic.ttffont>
        <font weight="300" style="normal">Roboto-Light.ttffont>
        <font weight="300" style="italic">Roboto-LightItalic.ttffont>
        <font weight="400" style="normal">Roboto-Regular.ttffont>
        <font weight="400" style="italic">Roboto-Italic.ttffont>
        <font weight="500" style="normal">Roboto-Medium.ttffont>
        <font weight="500" style="italic">Roboto-MediumItalic.ttffont>
        <font weight="900" style="normal">Roboto-Black.ttffont>
        <font weight="900" style="italic">Roboto-BlackItalic.ttffont>
        <font weight="700" style="normal">Roboto-Bold.ttffont>
        <font weight="700" style="italic">Roboto-BoldItalic.ttffont>
    family>

    
    <alias name="sans-serif-thin" to="sans-serif" weight="100" />
    <alias name="sans-serif-light" to="sans-serif" weight="300" />
    <alias name="sans-serif-medium" to="sans-serif" weight="500" />
    <alias name="sans-serif-black" to="sans-serif" weight="900" />
    <alias name="arial" to="sans-serif" />
    <alias name="helvetica" to="sans-serif" />
    <alias name="tahoma" to="sans-serif" />
    <alias name="verdana" to="sans-serif" />

...

    
    <family lang="und-Arab" variant="elegant">
        <font weight="400" style="normal">NotoNaskhArabic-Regular.ttffont>
        <font weight="700" style="normal">NotoNaskhArabic-Bold.ttffont>
    family>
    <family lang="und-Arab" variant="compact">
        <font weight="400" style="normal">NotoNaskhArabicUI-Regular.ttffont>
        <font weight="700" style="normal">NotoNaskhArabicUI-Bold.ttffont>
    family>
    <family lang="und-Ethi">
        <font weight="400" style="normal">NotoSansEthiopic-Regular.ttffont>
        <font weight="700" style="normal">NotoSansEthiopic-Bold.ttffont>
    family>
    
    <family lang="zh-Hans">
        <font weight="400" style="normal">NotoSansSC-Regular.otffont>
    family>
    
    <family lang="zh-Hant">
        <font weight="400" style="normal">NotoSansTC-Regular.otffont>
    family>

   如上所示,第一个family节点为系统默认字体。nameset节点的各个name子节点定义可用的字体名称,fileset节点的file子节点分别对应normal、bold、italic、bold-italic四种字体样式,如果file节点个数少于四个,相应字体样式会对应已有兄弟file节点的字体文件。family属性中lang代表国家的缩写,系统在切换语言的时候会从加载的字体中匹配国家的缩写,从而调出对于的系统字体、variant属性指的是字体的排列格式通常有compact(紧凑型)以及(简洁型)。

   fallback_fonts配置了系统备用字体。只有在系统内置字体中找不到相应字符时,才会到备用字体中去寻找,family节点的顺序对应搜索顺序,搜索匹配规则采用BCP47的定义。按照这个规则,如下图,系统语言为非缅甸状态下,当系统配置文件如上方所示时,系统会默认加载最上方的字体,即缅甸官方字体;当系统配置文件如下方所示时,系统会默认加载民间字体,这也就是为什么,修改配置后,其他语言下缅文乱码可以得以解决,而正如上面所说,系统在切换语言的时候会从加载的字体中匹配国家的缩写,即国际化适配,所以缅文状态下,一直没有乱码问题的存在。

浅析Android字体加载原理_第1张图片

   5.0以后的字体配置文件与之前版本的相比,最大的一个改进是将之前字体样式中的单一bold样式改为各种不同过的weight,这样可以更加细粒度的控制字重。

总结

   通过以上的加载流程,我们可以用以下流程图来总结一种字体的加载过程。

浅析Android字体加载原理_第2张图片

为系统添加新的字体

   现在的手机产商都对Android系统进行了定制,当然也会加上属于自己的字体,下面简单描述下添加新字体的流程,以缅甸字体为例。

   1.在frameworks/base/data/fonts/fonts.xml中添加字体节点

<family lang="my">
    <font weight="400" style="normal">ZawgyiOne.ttffont>
family>

   2.在frameworks/base/data/fonts/fonts.mk的最后加入新加的字体文件

PRODUCT_COPY_FILES := \
    frameworks/base/data/fonts/fonts.xml:$(TARGET_COPY_OUT_SYSTEM)/etc/fonts.xml

PRODUCT_PACKAGES := \
    DroidSansFallback.ttf \
    DroidSansMono.ttf \
    AndroidClock.ttf \
    DINPro-Black.otf \
    DINPro-Bold.otf \
    DINPro-Light.otf \
    DINPro-Medium.otf \
    DINPro-Regular.otf \
    Flyme-Light.ttf \
    ZawgyiOne.ttf

   3.在frameworks/base/data/fonts/Android.mk的font_src_files最后加入新加的字体文件


font_src_files := \
    AndroidClock.ttf \
    Flyme-Light.ttf \
    ZawgyiOne.ttf

   4.将下载的字体放入frameworks/base/data/fonts下

   其中第2、第3步是为了让字体能够编译进入系统中。

参考博客

   knight

   flyeek

你可能感兴趣的:(android-源码分析)