高斯差分边缘检测算子(Dog)

高斯差分与高斯拉普拉斯相似,都是先经过高斯平滑,再做差分,但这两个过程可结合成一起。高斯差分算子如下:
这里写图片描述
取sigma1 = 0.2, sigma2 = 0.8,离散化则
【-0.1045 -0.2283 -0.1045
-0.2283 1.4960 -0.2283
-0.1045 -0.2283 -0.1045 】
取整,并使模板总和为0,则
【-2, -5, -2
-5, 28,-5
-2, -5, -2】

#include"cv.h"
#include "highgui.h"

void DOG(CvMat* gray, CvMat* edge);
int main()
{
    IplImage *src = cvLoadImage("GragonGirl.jpg",1);

    const int width = src->width;
    const int height = src->height;

    CvMat *gray = cvCreateMat(height, width, CV_8UC1);
    cvCvtColor(src, gray, CV_BGR2GRAY);

    CvMat *edge = cvCreateMat(height, width, CV_8UC1);
    DOG(gray, edge);



    cvShowImage("SRC", src);
    cvShowImage("GRAY", gray);
    cvShowImage("DOG", edge);
    cvWaitKey(0);

    cvCvtColor(gray, src, CV_GRAY2BGR);
    cvSaveImage("GRAY.bmp", src);

    cvCvtColor(edge, src, CV_GRAY2BGR);
    cvSaveImage("EDGE.bmp", src);

    cvReleaseMat(&gray);
    cvReleaseMat(&edge);
    return 0;
}
void DOG(CvMat* gray, CvMat* edge)
{
    const int width = gray->width;
    const int height = gray->height;

    cvZero(edge);

    CvMat* edgeTemp1 = cvCreateMat(height, width, CV_16SC1);

    cvZero(edgeTemp1);

    int Template1[9] = { -2, -5, -2,
                         -5, 28, -5,
                        -2, -5,  -2};


    for (int j = 1; j < height - 1; j ++)
    {
        int* edgeTemp1Data = (int*)(edgeTemp1->data.ptr + j * edgeTemp1->step);
        uchar* edgeData = (uchar*)(edge->data.ptr + j * edge->step);
        for (int i = 1; i < width - 1; i ++)
        {
            for (int k = 0; k < 3; k ++)
            {
                for (int l = 0; l < 3; l ++)
                {
                    edgeTemp1Data[i] += Template1[3 * k + l] * ((uchar*)(gray->data.ptr + (j + k - 1) * gray->step))[i + l - 1];
                    if (abs(edgeTemp1Data[i]) > 255)
                    {
                        edgeData[i] = 255;
                    }
                    else
                    {
                        edgeData[i] = abs(edgeTemp1Data[i]);
                    }
                }
            }

        }
    }

    cvReleaseMat(&edgeTemp1);

}



源图,灰度图,效果图如下所示
高斯差分边缘检测算子(Dog)_第1张图片

你可能感兴趣的:(边缘检测)