Apache Calcite 是一款开源SQL解析工具, 可以将各种SQL语句解析成抽象语法术AST(Abstract Syntax Tree), 之后通过操作AST就可以把SQL中所要表达的算法与关系体现在具体代码之中。
Calcite的生前为Optiq(也为Farrago), 为Java语言编写, 通过十多年的发展, 在2013年成为Apache旗下顶级项目,并还在持续发展中, 该项目的创始人为Julian Hyde, 其拥有多年的SQL引擎开发经验, 目前在Hortonworks工作, 主要负责Calcite项目的开发与维护。
目前, 使用Calcite作为SQL解析与处理引擎有Hive、Drill、Flink、Phoenix和Storm,可以肯定的是还会有越来越多的数据处理引擎采用Calcite作为SQL解析工具。
总结来说Calcite有以下主要功能:
Calcite 解析步骤
如上图中所述,一般来说Calcite解析SQL有以下几步:
Calcite主要有以下概念:
Catalog:主要定义被SQL访问的命名空间,主要包括以下几点:
RelDataType
定义RelDataType
代表表的数据定义,如表的数据列名称、类型等。Schema:
public interface Schema {
Table getTable(String name);
Set getTableNames();
Set getFunctionNames();
Schema getSubSchema(String name);
Set getSubSchemaNames();
Expression getExpression(SchemaPlus parentSchema, String name);
boolean isMutable();
Table:
public interface Table {
RelDataType getRowType(RelDataTypeFactory typeFactory);
Statistic getStatistic();
Schema.TableType getJdbcTableType();
}
其中RelDataType代表Row的数据类型, Statistic 用于统计表的相关数据、特别是在CBO用于计表计算表的代价。
一句Sql
selcct id, name, cast(age as bigint) from A.INFO
id, name
则为data type fieldbigint
为 data typeA
为schemaINFO
为表由Java CC编写,将SQL转化成AST.
SqlNode
, 并且Sqlnode
可以通过unparse
方法反向转化成SQL
cast(id as float)
Java CC 可表示为
e = Expression(ExprContext.ACCEPT_SUBQUERY)
dt = DataType() {agrs.add(dt);}
....
首先看一下
INSERT INTO tmp_node
SELECT s1.id1, s1.id2, s2.val1
FROM source1 as s1 INNER JOIN source2 AS s2
ON s1.id1 = s2.id1 and s1.id2 = s2.id2 where s1.val1 > 5 and s2.val2 = 3;
通过Calcite转化为:
LogicalTableModify(table=[[TMP_NODE]], operation=[INSERT], flattened=[false])
LogicalProject(ID1=[$0], ID2=[$1], VAL1=[$7])
LogicalFilter(condition=[AND(>($2, 5), =($8, 3))])
LogicalJoin(condition=[AND(=($0, $5), =($1, $6))], joinType=[INNER])
LogicalTableScan(table=[[SOURCE1]])
LogicalTableScan(table=[[SOURCE2]])
是未经优化的RelNode树,可以发现最底层是TableScan,也是读取表的原始数据,紧接着是LogicalJoin,Joiner的类型为INNER JOIN, LogicalJoin之后接下做LogicalFilter 操作,对应SQL中的WHERE条件,最后做Project也就是投影操作。
但是我们可以观察到对于INNER JOIN而言, WHERE 条件是可以下推,如
LogicalTableModify(table=[[TMP_NODE]], operation=[INSERT], flattened=[false])
LogicalProject(ID1=[$0], ID2=[$1], VAL1=[$7])
LogicalJoin(condition=[AND(=($0, $5), =($1, $6))], joinType=[inner])
LogicalFilter(condition=[=($4, 3)])
LogicalProject(ID1=[$0], ID2=[$1], ID3=[$2], VAL1=[$3], VAL2=[$4],VAL3=[$5])
LogicalTableScan(table=[[SOURCE1]])
LogicalFilter(condition=[>($3,5)])
LogicalProject(ID1=[$0], ID2=[$1], ID3=[$2], VAL1=[$3], VAL2=[$4],VAL3=[$5])
LogicalTableScan(table=[[SOURCE2]])
这样可以减少JOIN的数据量,提高SQL效率
实际过程中可以将JOIN 的中条件下推以较少Join的数据量
INSERT INTO tmp_node
SELECT s1.id1, s1.id2, s2.val1
FROM source1 as s1 LEFT JOIN source2 AS s2
ON s1.id1 = s2.id1 and s1.id2 = s2.id2 and s1.id3 = 5
s1.id3 = 5
这个条件可以先下推过滤s1中的数据, 但在特定场景下,有些不能下推,如下sql:
INSERT INTO tmp_node
SELECT s1.id1, s1.id2, s2.val1
FROM source1 as s1 LEFT JOIN source2 AS s2
ON s1.id1 = s2.id1 and s1.id2 = s2.id2 and s2.id3 = 5
如果s1,s2是流式表(动态表,请参考Flink流式概念)的话,就不能下推,因为s1下推的话,由于过滤后没有数据驱动join操作,因而得不到想要的结果(详见Flink/Sparking-Streaming)
那接下来我们可能有一个疑问,在什么情况下可以做类似下推、上推操作,又是根据什么原则进行的呢?如下图所示
不同的JOIN顺序
T1 JOIN T2 JOIN T3
类似于此种情况JOIN的顺序是上图的前者还是后者?这就涉及到Optimizer所使用的方法,Optimizer主要目的就是减小SQL所处理的数据量、减少所消耗的资源并最大程度提高SQL执行效率如:剪掉无用的列、合并投影、子查询转化成JOIN、JOIN重排序、下推投影、下推过滤等。目前主要有两类优化方法:基于语法(RBO)与基于代价(CBO)的优化
通俗一点的话就是事先定义一系列的规则,然后根据这些规则来优化执行计划。
如
ProjectFilterRule
此Rule的使用场景为Filter在Project之上,可以将Filter下推。假如某一个RelNode树
LogicalFilter
LogicalProject
LogicalTableScan
则可优化成
LogicalProject
LogicalFilter
LogicalTableScan
FilterJoinRule
此Rule的使用场景为Filter在Join之上,可以先做Filter然后再做Join, 以减少Join的数量
等等,还有很多类似的规则。但RBO一定程度上是经验试的优化方法,无法有一个公式上的判断哪种优化更优。 在Calcite中实现方法为 HepPlanner
通俗一点的说法是:通过某种算法计算SQL所有可能的执行计划的“代价”,选择某一个代价较低的执行计划,如上文中三张表作JOIN, 一般来说RBO无法判断哪种执行计划优化更好,只有分别计算每一种JOIN方法的代价。
Calcite会将每一种操作(如LogicaJoin、LocialFilter、 LogicalProject、LogicalScan) 结合实际的Schema转化成具体的代价数,比较不同的执行计划所具有的代价,然后选择相对小计划作为最终的结果,之所以说相对小,这是因为如果要完全遍历计算所有可能的代价可能得不偿失,花费更多的人力与资源,因此只是说选择相对最优的执行计划。CBO目的是“避免使用最差的执行计划,而不是找到最好的”
目前Calcite中就是采用CBO进行优化,实现方法为VolcanoPlanner
,有关此算法的具体内容可以参考原码
由于Calcite是Java语言编写,因此只需要在工程或项目中引入相应的Jar包即可,下面为一个可以运行的例子:
public class TestOne {
public static class TestSchema {
public final Triple[] rdf = {new Triple("s", "p", "o")};
}
public static void main(String[] args) {
SchemaPlus schemaPlus = Frameworks.createRootSchema(true);
//给schema T中添加表
schemaPlus.add("T", new ReflectiveSchema(new TestSchema()));
Frameworks.ConfigBuilder configBuilder = Frameworks.newConfigBuilder();
//设置默认schema
configBuilder.defaultSchema(schemaPlus);
FrameworkConfig frameworkConfig = configBuilder.build();
SqlParser.ConfigBuilder paresrConfig = SqlParser.configBuilder(frameworkConfig.getParserConfig());
//SQL 大小写不敏感
paresrConfig.setCaseSensitive(false).setConfig(paresrConfig.build());
Planner planner = Frameworks.getPlanner(frameworkConfig);
SqlNode sqlNode;
RelRoot relRoot = null;
try {
//parser阶段
sqlNode = planner.parse("select \"a\".\"s\", count(\"a\".\"s\") from \"T\".\"rdf\" \"a\" group by \"a\".\"s\"");
//validate阶段
planner.validate(sqlNode);
//获取RelNode树的根
relRoot = planner.rel(sqlNode);
} catch (Exception e) {
e.printStackTrace();
}
RelNode relNode = relRoot.project();
System.out.print(RelOptUtil.toString(relNode));
}
}
类Triple 对应的表定义:
public class Triple {
public String s;
public String p;
public String o;
public Triple(String s, String p, String o) {
super();
this.s = s;
this.p = p;
this.o = o;
}
}
详细可以代码在这里
Calcite的功能远不止以上介绍,除了标准SQL的,还支持以下内容:
以上内容主要介绍上Calcite相关概念并通过相例子说明了Calcite使用方法, 希望通过上述内容,读者能对Calcite有初步的了解。
由于笔者使用和探索Calcite时间也不长,以上内容难免有错误与不准确之处,还望各位读者不吝指正,相互学习。
参考文献与网址:
作者:ni_d58f
链接:https://www.jianshu.com/p/2dfbd71b7f0f
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。