HDOJ 哈密顿绕行世界问题

 

哈密顿绕行世界问题

http://acm.hdu.edu.cn/diy/contest_showproblem.php?cid=12573&pid=1003

Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 6   Accepted Submission(s) : 2

Font: Times New Roman | Verdana | Georgia

Font Size:

Problem Description

一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。

Input

前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.

Output

输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个: 后列出经过的城市.参看Sample output

Sample Input

2 5 20
1 3 12
2 4 10
3 5 8
1 4 6
5 7 19
6 8 17
4 7 9
8 10 16
3 9 11
10 12 15
2 11 13
12 14 20
13 15 18
11 14 16
9 15 17
7 16 18
14 17 19
6 18 20
1 13 19
5
0

Sample Output

1:  5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5
2:  5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5
3:  5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5
4:  5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5
5:  5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5
6:  5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5
7:  5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5
8:  5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5
9:  5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5
10:  5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5
11:  5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5
12:  5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5
13:  5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5
14:  5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5
15:  5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5
16:  5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5
17:  5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5
18:  5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5
19:  5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5
20:  5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5
21:  5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5
22:  5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
23:  5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5
24:  5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5
25:  5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5
26:  5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5
27:  5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5
28:  5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5
29:  5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5
30:  5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5
31:  5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5
32:  5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5
33:  5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5
34:  5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5
35:  5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5
36:  5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5
37:  5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5
38:  5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5
39:  5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5
40:  5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5
41:  5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5
42:  5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5
43:  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
44:  5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5
45:  5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5
46:  5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5
47:  5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5
48:  5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5
49:  5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5
50:  5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5
51:  5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5
52:  5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5
53:  5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5
54:  5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5
55:  5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5
56:  5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5
57:  5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5
58:  5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5
59:  5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5
60:  5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5

Author

Zhousc

Source

ECJTU 2008 Summer Contest
 
搜索完除起点以外的19个点时,判断最后那个点是否与起点相连,相连则输出路径,否则退出。注意回溯,否则只会输出1条路径。
下面的代码是参考某大牛的:
 
#include
using namespace std;
int map[22][22];
int path[22];//保存路径
int s,num;//始点和路线号
bool visited[22];
void dfs(int v,int cnt){
     if(cnt==19 && map[v][s] ){
                printf("%d:  ",++num);
                for(int i=0;i<20;i++)
                   printf("%d ",path[i]);
                printf("%d\n",s);
                return ;
     }
     if(cnt>19)
         return ;
     for( int i=1;i<=20;i++)
        if(!visited[i] && map[v][i] ){
             path[cnt+1]=i;
             visited[i]=1;
             dfs(i,cnt+1);
             visited[i]=0;  //回溯
            // if(cnt>=19)  return ;              
        }
}
int main(){
    int v,a,b,c;
    memset(map,0,sizeof(map));
    for(int i=1;i<=20;i++){
         scanf("%d%d%d",&a,&b,&c);
         map[i][a]=map[i][b]=map[i][c]=1;
         map[a][i]=map[b][i]=map[c][i]=1;  //双向的
    }
    while(scanf("%d",&v)!=EOF  && v){
          memset(visited,0,sizeof(visited));
          s=v;  num=0;  visited[v]=1; path[0]=v;
          dfs(v,0);                            
    }  
    return 0;
}

你可能感兴趣的:(DFS,and,BFS)