一:数学原理

在临近点插值的数学基础上,双线性插值,不是简单copy源像素的值,而是获取四个最邻

近目标像素的像素值乘以权重系数,简单的数学公式可以表示为:

D(x, y) = S(j, k) * a + S(j+1, k) *b + S(j+1,k+1) * c + S(j, K+1) * d             公式一

 

问题转化如何提取源像素的中四个临近点,根据临近点插值中从目标像素寻找最临近的源像

素点的方法:

Sx= Dx * (Sh/Dh) // row

Sy= Dy * (Sw/Dw) // column

公式的详细说明参见这里http://blog.csdn.net/jia20003/article/details/6907152

计算出来的值是浮点数坐标,分别取整数部分坐标为(j, k), 小数部分坐标为(t, u)


根据小数部分的(t,u)坐标,首先进行水平方向的权重计算得出

Q11 = S(j,k) * (1-t) + S(j, k+1) * t;

Q22 = S(j+1, k) * (1-t) + S(j+1,K+1) *t

利用Q11, Q22的值,进行垂直方向权重计算得出计算采样点值

D(x, y) = Q11*(1-u) + Q22 * u; 把Q11, Q22带入,最终有等式:

D(x, y) = S(j, k) *(1-t)*(1-u) + S(j, k+1)*t*(1-u) + S(j+1,k)*(1-t)*u + S(j+1,k+1)*t*u

从而得出四个对应的权重系数分别为:

a = (1-t)*(1-u)

b = (1-t)*u

c = t*u

d = t*(1-u)

带入公式一,即可得出目标像素的值。

 

二:双线性内插值算法优缺点

双线性内插值算法在图像的放缩处理中,具有抗锯齿功能, 是最简单和常见的图像放缩算法,但是双线性内插值算法没有考虑边缘和图像的梯度变化,相比之下双立方插值算法更好解决这些问题。

 

三:关键程序代码解析

根据目标像素坐标,计算采样点浮点数坐标的代码如下:

float rowRatio = ((float)srcH)/((float)destH);

float colRatio = ((float)srcW)/((float)destW);

double srcRow = ((float)row)*rowRatio;

double srcCol = ((float)col)*colRatio;

 

计算采样点的整数坐标和小数部分坐标代码如下:

double j = Math.floor(srcRow);

double t = srcRow – j

double k = Math.floor(srcCol);

double u = srcCol - k;

 

根据小数坐标(t,u)来计算四个相邻像素点权重系数代码如下:

double coffiecent1 = (1.0d-t)*(1.0d-u);

double coffiecent2 = (t)*(1.0d-u);

double coffiecent3 = t*u;

double coffiecent4 = (1.0d-t)*u;

 

处理边缘像素代码如下:

return x>max ? max : x

 

四:程序运行效果如下


左边为源图像,右边为基于双线性内插值放大两倍以后的图像


五:双线性内插值JAVA算法代码

public class BilineInterpolationScale implements ImageScale { 	public BilineInterpolationScale() { 		 	} 	/** 	 *  	 */ 	@Override 	public int[] imgScale(int[] inPixelsData, int srcW, int srcH, int destW, int destH) { 		double[][][] input3DData = processOneToThreeDeminsion(inPixelsData, srcH, srcW); 		int[][][] outputThreeDeminsionData = new int[destH][destW][4]; 		float rowRatio = ((float)srcH)/((float)destH); 		float colRatio = ((float)srcW)/((float)destW); 		for(int row=0; rowmax ? max : x The purpose of this method is to convert the data in the 3D array of ints back into 

*

the 1d array of type int.

* */ public int[] convertToOneDim(int[][][] data, int imgCols, int imgRows) { // Create the 1D array of type int to be populated with pixel data int[] oneDPix = new int[imgCols * imgRows * 4]; // Move the data into the 1D array. Note the // use of the bitwise OR operator and the // bitwise left-shift operators to put the // four 8-bit bytes into each int. for (int row = 0, cnt = 0; row < imgRows; row++) { for (int col = 0; col < imgCols; col++) { oneDPix[cnt] = ((data[row][col][0] << 24) & 0xFF000000) | ((data[row][col][1] << 16) & 0x00FF0000) | ((data[row][col][2] << 8) & 0x0000FF00) | ((data[row][col][3]) & 0x000000FF); cnt++; }// end for loop on col }// end for loop on row return oneDPix; }// end convertToOneDim private double [][][] processOneToThreeDeminsion(int[] oneDPix2, int imgRows, int imgCols) { double[][][] tempData = new double[imgRows][imgCols][4]; for(int row=0; row> 24) & 0xFF; // alpha tempData[row][col][1] = (aRow[col] >> 16) & 0xFF; // red tempData[row][col][2] = (aRow[col] >> 8) & 0xFF; // green tempData[row][col][3] = (aRow[col]) & 0xFF; // blue } } return tempData; } }