- Spark MLlib模型训练—推荐算法 ALS(Alternative Least Squares)
不二人生
SparkML实战spark-ml推荐算法算法
SparkMLlib模型训练—推荐算法ALS(AlternativeLeastSquares)如果你平时爱刷抖音,或者热衷看电影,不知道有没有过这样的体验:这类影视App你用得越久,它就好像会读心术一样,总能给你推荐对胃口的内容。其实这种迎合用户喜好的推荐,离不开机器学习中的推荐算法。在今天这一讲,我们就结合两个有趣的电影推荐场景,为你讲解SparkMLlib支持的协同过滤与频繁项集算法电影推荐场
- 大数据领域的深度分析——AI是在帮助开发者还是取代他们?
阳爱铭
大数据与数据中台技术沉淀大数据人工智能后端数据库架构数据库开发etl工程师chatgpt
在大数据领域,生成式人工智能(AIGC)的应用正在迅速扩展,改变了数据科学家和开发者的工作方式。本文将从大数据的专业视角,探讨AI工具在这一领域的作用,以及它们是如何帮助开发者而非取代他们的。1.大数据领域的AI工具现状在大数据领域,AI工具已经取得了显著进展,以下是几款主要的AI工具及其功能和实际应用:ApacheSpark+MLlib:ApacheSpark是一个开源的分布式计算系统,广泛用于
- Spark MLlib模型训练—聚类算法 K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法K-meansK-means是一种经典的聚类算法,广泛应用于数据挖掘、图像处理、推荐系统等领域。它通过将数据划分为(k)个簇(clusters),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。ApacheSpark提供了K-means聚类算法的高效实现,支持大规模数据的分布式计算。本文将详细介绍K-means聚类算法的原理,并结合Spark
- Spark MLlib模型训练—聚类算法 Bisecting K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法BisectingK-means由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。二分KMeans(BisectingKMeans)算法的主要思想是:首先将所有点作为一个簇
- Spark MLlib模型训练—回归算法 Random forest regression
不二人生
SparkML实战spark-ml回归随机森林
SparkMLlib模型训练—回归算法Randomforestregression随机森林回归(RandomForestRegression)是一种集成学习方法,通过结合多个决策树的预测结果来提升模型的准确性和稳健性。相较于单一的决策树模型,随机森林通过随机采样和多棵树的集成,减少了模型的方差,从而在处理复杂数据集时展现出更好的性能。本文将详细介绍随机森林回归的原理、实现方法、应用场景,并通过Sc
- Spark MLlib LinearRegression线性回归算法源码解析
SmileySure
Spark人工智能算法SparkMLlib
线性回归一元线性回归hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x——————–1多元线性回归hθ(x)=∑mi=1θixi=θTXhθ(x)=∑i=1mθixi=θTX—————–2损失函数J(θ)=1/2∑mi=1(hθ(xi)−yi)2J(θ)=1/2∑i=1m(hθ(xi)−yi)2—————31/2是为了求导时系数为1,平方里是真实值减去估计值我们的目的就是求其最小值最小二乘法要求较为
- Spark MLlib模型训练—回归算法 GLR( Generalized Linear Regression)
猫猫姐
Spark实战回归spark-ml线性回归spark
SparkMLlib模型训练—回归算法GLR(GeneralizedLinearRegression)在大数据分析中,线性回归虽然常用,但在许多实际场景中,目标变量和特征之间的关系并非线性,这时广义线性回归(GeneralizedLinearRegression,GLR)便应运而生。GLR是线性回归的扩展,能够处理非正态分布的目标变量,广泛用于分类、回归以及其他统计建模任务。本文将深入探讨Spar
- Spark MLlib 数据预处理-特征变换
weixin_33841722
大数据人工智能scala
2019独角兽企业重金招聘Python工程师标准>>>Tokenizer(分词器)算法介绍:Tokenization将文本划分为独立个体(通常为单词)。RegexTokenizer基于正则表达式提供更多的划分选项。默认情况下,参数“pattern”为划分文本的分隔符。或者可以指定参数“gaps”来指明正则“patten”表示“tokens”而不是分隔符,这样来为分词结果找到所有可能匹配的情况。调用
- spark mllib 特征学习笔记 (一)
路人与大师
spark-ml学习笔记
PySparkMLlib特征处理详解PySparkMLlib提供了丰富的特征处理工具,帮助我们进行特征提取、转换和选择。以下是PySparkMLlib中常用的特征处理类及其简要介绍。1.BinarizerBinarizer是将连续特征二值化的转换器。frompyspark.ml.featureimportBinarizerbinarizer=Binarizer(threshold=0.5,inpu
- Spark MLlib 特征工程系列—特征转换VectorSizeHint
不二人生
Spark实战spark-ml机器学习spark
SparkMLlib特征工程系列—特征转换VectorSizeHintVectorSizeHint是Spark提供的一个特征转换器,用于指定向量列的大小(即维度)。在一些特征转换和建模过程中,要求输入的向量必须有固定的大小。当数据中包含不同大小的向量时,Spark可能无法自动推断出向量的正确大小。这时,VectorSizeHint可以显式地声明向量的大小,确保后续的操作能够顺利进行。为什么需要使用
- Spark MLlib模型训练—分类算法Multilayer Perceptron Classifier
猫猫姐
Spark实战spark-mlspark机器学习
SparkMLlib模型训练—分类算法MultilayerPerceptronClassifierMultilayerPerceptronClassifier(多层感知器分类器,简称MLP)是SparkMLlib中用于分类任务的神经网络模型。MLP是一种前馈神经网络(FeedforwardNeuralNetwork),其架构由输入层、隐藏层和输出层组成。MLP通过反向传播算法(Backpropag
- Quick introduction to Apache Spark
Liam_ml
什么是SparkApacheSpark是一种快速通用的集群计算系统。它提供Java,Scala,Python和R中的高级API,以及支持通用执行图的优化引擎。它还支持一组丰富的更高级别的工具,包括SparkSQL用户SQL和结构化数据处理,MLlib机器学习,GraphX用户图形处理下载从项目网站的下载页面获取Spark。本文档适用于Spark版本2.3.2。Spark使用Hadoop的客户端库来
- Spark编程实验六:Spark机器学习库MLlib编程
Francek Chen
Spark编程基础sparkmllib大数据机器学习算法
目录一、目的与要求二、实验内容三、实验步骤1、数据导入2、进行主成分分析(PCA)3、训练分类模型并预测居民收入4、超参数调优四、结果分析与实验体会一、目的与要求1、通过实验掌握基本的MLLib编程方法;2、掌握用MLLib解决一些常见的数据分析问题,包括数据导入、成分分析和分类和预测等。二、实验内容1.数据导入从文件中导入数据,并转化为DataFrame。2、进行主成分分析(PCA)对6个连续型
- Spark MLlib
Francek Chen
Spark编程基础spark-mlsparkmllib机器学习
目录一、SparkMLlib简介(一)什么是机器学习(二)基于大数据的机器学习(三)Spark机器学习库MLlib二、机器学习流水线(一)机器学习流水线概念(二)流水线工作过程(三)构建一个机器学习流水线三、特征提取和转换(一)特征提取:TF-IDF(二)特征转换:标签和索引的转化四、分类与回归(一)逻辑斯蒂回归分类器(二)决策树分类器一、SparkMLlib简介(一)什么是机器学习机器学习可以看
- 入门篇 - Spark简介
君子何为
Spark核心模块image.pngSparkCore:提供了Spark最基础与最核心的功能,Spark其他的功能如:SparkSQL,SparkStreaming,GraphX,MLlib都是在SparkCore的基础上进行扩展的SparkSQL:Spark用来操作结构化数据的组件。通过SparkSQL,用户可以使用SQL或者ApacheHive版本的SQL来查询数据。SparkStreamin
- 【SparkML实践4】Pipeline实战scala版
周润发的弟弟
Spark机器学习spark-mlscala开发语言
Pipeline中的主要概念MLlib标准化了机器学习算法的API,使得将多个算法组合成单一的管道或工作流程变得更加容易。本节介绍了PipelinesAPI引入的关键概念,其中管道的概念主要受到scikit-learn项目的启发。DataFrame:这个机器学习API使用来自SparkSQL的DataFrame作为机器学习数据集,它可以包含多种数据类型。例如,一个DataFrame可以有不同的列存
- window环境下安装spark
FTDdata
spark是大数据计算引擎,拥有SparkSQL、SparkStreaming、MLlib和GraphX四个模块。并且spark有R、python的调用接口,在R中可以用SparkR包操作spark,在python中可以使用pyspark模块操作spark。本文介绍spark在window环境下的安装。0环境先给出安装好后的各个软件版本:win1064bitjava1.8.0scala2.12.8
- Spark 的架构与组件
OpenChat
spark架构大数据分布式
1.背景介绍Spark是一个快速、通用的大规模数据处理框架,它可以处理批量数据和流式数据,支持多种数据源,并提供了丰富的数据处理功能。Spark的核心组件包括SparkCore、SparkSQL、SparkStreaming和MLlib等。本文将详细介绍Spark的架构和组件,并分析其优势和挑战。1.1Spark的诞生和发展Spark的诞生可以追溯到2008年,当时Netflix的工程师Matei
- Apache Spark架构与特点
OpenChat
apachespark架构大数据分布式
1.背景介绍ApacheSpark是一个开源的大数据处理框架,由AMLLabs公司开发,后被Apache软件基金会所支持。它可以处理批量数据和流式数据,并提供了一个易用的编程模型,使得开发人员可以使用Scala、Java、Python等编程语言来编写程序。Spark的核心组件是SparkStreaming、MLlib、GraphX和SparkSQL,它们分别提供了流式数据处理、机器学习、图形计算和
- 使用spark mllib训练中文文本分类器的
DreamNotOver
spark-ml中文分类
importorg.apache.spark.mllib.classification.NaiveBayesimportorg.apache.spark.mllib.feature.HashingTFimportorg.apache.spark.mllib.linalg.Vectorsimportorg.apache.spark.sql.functions._objectChineseTextCl
- 使用 Spark MLlib 使用 jieba 分词训练中文分类器
DreamNotOver
spark-ml中文分类集群
importorg.apache.spark.ml.classification.NaiveBayesimportorg.apache.spark.ml.feature.HashingTFimportorg.apache.spark.sql.functions._importjieba.{JiebaSegmenter,WordPunctTokenizer}objectChineseTextClas
- 【Spark】pyspark 基于DataFrame使用MLlib包
beautiful_huang
Sparkspark
在这里,我们将基于DataFrame使用MLlib包。另外,根据Spark文档,现在主要的Spark机器学习API是spark.ml包中基于DataFrame的一套模型。1ML包的介绍从顶层上看,ML包主要包含三大抽象类:转换器、预测器和工作流。1.1转换器(Transformer)从Transformer抽象类派生出来的每一个新的Transformer都需要实现一个.transform(…)方法
- Pyspark
李明朔
机器学习spark-ml
文章目录一、SparkCore1.SparkContext:2.SparkSession3.RDD4.Broadcast、Accumulator:5.Sparkconf6.SparkFiles7.StorageLevel二、SparkSQL1.读取数据2.保存/写入数据3.Dataframes3.pysparkSQL函数三、SparkStreaming四、MLlib一、SparkCore在Spar
- Spark MLlib ----- ALS算法
创作者mateo
sparksparkMLlibALSspark-ml算法
补充在谈ALS(AlternatingLeastSquares)之前首先来谈谈LS,即最小二乘法。LS算法是ALS的基础,是一种数优化技术,也是一种常用的机器学习算法,他通过最小化误差平方和寻找数据的最佳匹配,利用最小二乘法寻找最优的未知数据,保证求的数据与已知的数据误差最小。LS也被用于拟合曲线,比如所熟悉的线性模型。下面以简单的线性一元线性回归模型说明最小二乘法。假设我们有一组数据{(x1,y
- Java接入Apache Spark(入门环境搭建、常见问题)
许忆
javaapachespark
Java接入ApacheSpark(环境搭建、常见问题)背景介绍ApacheSpark是一个快速的,通用的集群计算系统。它对Java,Scala,Python和R提供了的高层API,并有一个经优化的支持通用执行图计算的引擎。它还支持一组丰富的高级工具,包括用于SQL和结构化数据处理的SparkSQL,用于机器学习的MLlib,用于图计算的GraphX和SparkStreaming。Spark是Ma
- Spark MLlib简介与机器学习流程
晓之以理的喵~~
Sparkspark-ml机器学习人工智能
在大数据领域,机器学习是一个关键的应用领域,可以用于从海量数据中提取有价值的信息和模式。ApacheSparkMLlib是一个强大的机器学习库,可以在分布式大数据处理环境中进行机器学习任务。本文将深入介绍SparkMLlib的基本概念、机器学习流程以及提供详细的示例代码。什么是SparkMLlib?SparkMLlib是ApacheSpark的机器学习库,旨在简化大规模数据的机器学习任务。它提供了
- StreamPark + PiflowX 打造新一代大数据计算处理平台
暗影八度
大数据sparkhadoopflink
什么是PiflowXPiFlow是一个基于分布式计算框架Spark开发的大数据流水线系统。该系统将数据的采集、清洗、计算、存储等各个环节封装成组件,以所见即所得方式进行流水线配置。简单易用,功能强大。它具有如下特性:简单易用:可视化配置流水线,实时监控流水线运行状态,查看日志;功能强大:提供100+的数据处理组件,包括Hadoop、Spark、MLlib、Hive、Solr、Redis、MemCa
- mllib可扩展学习库java api使用
卖兔子的胡萝卜zz
API接口开发系列mllib学习java
mllib可扩展学习库javaapi是使用ApacheSpark构建的机器学习库,包括分类,聚类,特征提取和预处理等功能。本文将从以下几个方面详细介绍如何使用mllib可扩展学习库javaapi。一、数据预处理数据预处理是机器学习的重要步骤之一,可以提高模型的准确性和鲁棒性。mllib可扩展学习库javaapi提供了一系列的数据处理工具,包括数据清洗,缺失值填充,特征缩放和编码等。下面是一个使用m
- from pyspark.mllib.recommendation import Rating出错
路人乙yh
进入pyspark输入frompyspark.mllib.recommendationimportRating报错nomodulenamednumpy我的环境:centos6.5,python2.6显然是我的虚拟机系统里自带的python2没有numpy这个包,而平常在windows下都是通过pipinstallnumpy,虚拟机也没有pip,同时因为国外的服务器,pip下载的速度很慢,所以只能通
- 【头歌实训】Spark MLlib ( Python 版 )
撕得失败的标签
【头歌实训】spark-mlpython开发语言头歌实训
文章目录第1关:基本统计编程要求测试说明答案代码第2关:回归编程要求测试说明参考资料答案代码第3关:分类编程要求测试说明参考资料答案代码第4关:协同过滤编程要求测试说明参考资料答案代码第5关:聚类编程要求测试说明参考资料答案代码第6关:降维编程要求测试说明参考资料答案代码第7关:特征提取与转化编程要求测试说明答案代码第8关:频繁模式挖掘编程要求测试说明参考资料答案代码第9关:评估指标编程要求测试说
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST