- python图像匹配_opencvpython中的图像匹配
weixin_39585675
python图像匹配
我一直在做一个项目,用opencvpython识别相机中显示的标志。我已经尝试过使用surf、颜色直方图匹配和模板匹配。但在这3个问题中,它并不总是返回正确的答案。我现在想要的是,解决我这个问题的最好办法是什么。模板图像示例:以下是摄像头中显示的标志示例。如果这是我想要识别的图像,该怎么用?在更新matchTemplate中的代码flags=["Cambodia.jpg","Laos.jpg","
- 图像匹配---(Python)
阳光下的Smiles
Python图像处理
图像匹配---(Python)图像匹配分为以灰度为基础的匹配和以特征为基础的匹配:(1)灰度匹配是基于像素的匹配。灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。(2)特征匹配则是基于区域的匹配。基于特征的匹配所处理的图像一般包含的特征有颜色特征、纹理特征、形状特征、空间位置特征等1、差分矩阵求和差分矩阵=图像A矩阵数据-图像B矩阵
- opencv轮廓近似,模板匹配
富士达幸运星
opencv人工智能计算机视觉
在图像处理领域,轮廓近似和模板匹配是两种非常关键的技术,它们广泛应用于计算机视觉、图像分析和图像识别等多个方面。本文将详细介绍如何使用OpenCV库进行轮廓近似和模板匹配,并给出具体的代码示例。一、轮廓近似(ContourApproximation)轮廓近似是指将图像中的轮廓逼近成由直线段组成的多边形或其他简单形状,以减少轮廓的复杂度和数据量。OpenCV提供了cv2.approxPolyDP()
- 数字图像处理 - 形态学腐蚀
HelloZEX
数字图像处理C++图像处理opencv形态学处理
一、理论与概念讲解——从现象到本质1.1形态学概述形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。数学形态学(Mathematicalmorphology)是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、
- 线性代数在卷积神经网络(CNN)中的体现
科学的N次方
人工智能线性代数cnn人工智能
案例:深度学习中的卷积神经网络(CNN)在图像识别领域,卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一个广泛应用深度学习模型,它在人脸识别、物体识别、医学图像分析等方面取得了显著成效。CNN中的核心操作——卷积,就是一个直接体现线性代数应用的例子。假设我们正在训练一个用于识别猫和狗的图像分类器,原始输入是一幅RGB彩色图片,可以将其视为一个高度、宽度和通道数(R
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- DDE红外图像增强
烟雨_潇潇
一直忙于手上的工作,没有及时总结,今天抽几分钟时间,将最近DDE红外图像增强的试验结果分享下。具体的实现过程,会在后面的博文中进行详细的说明、论证。有车的照片没白天所拍照片,其余2张为晚上8点所拍照片,另因工作需要,先进行算法部分,两点校正和盲元填充放后面做,且手上探测器库存4年之久,光学镜头也不是特别好,所以图片中盲元较多。从图像分析,以图片中倒车的车为例,细节纹理非常明显,结果表明4x4的cl
- 基于matlab的相关模板图像匹配技术
简单光学
MATLABmatlab图像匹配相关模板匹配缺陷识别
一理论基础基于相关的模板匹配技术可直接⽤于在⼀幅图像中寻找某种⼦图像模式。图像相关的基本概念是:对于⼤⼩为M×N的图像f(x,y)和⼤⼩为J×K的⼦图像模式w(x,y),f与w的相关可表示为:c(x,y)=∑s=0K∑t=0Jw(s,t)f(x+s,y+t)c\left(x,y\right)=\sum\limits_{s=0}^{K}{\sum\limits_{t=0}^{J}{w\left(s,
- 图像识别基础之模板匹配
lxzlife
图像处理opencv计算机视觉c++
principle图像匹配本质:图像的相似度很高(矩阵的相似度很高)code/*\brief我的图像匹配函数,获取差方和均值最小的矩阵作为结果\paramsrcPicFile:用以匹配的图像文件\paramtemplatePicFile:模板图像文件\paramdestPicFile:输出的检测结果文件*/voidMyPictureMatch(constchar*srcPicFile,constc
- OpenCV中的边缘检测技术及实现
superdont
计算机视觉opencv人工智能计算机视觉python矩阵图像处理经验分享
介绍:边缘检测是计算机视觉中非常重要的技术之一。它用于有效地识别图像中的边缘和轮廓,对于图像分析和目标检测任务至关重要。OpenCV提供了多种边缘检测技术的实现,本博客将介绍其中的两种常用方法:Canny边缘检测和Sobel边缘检测。理论介绍:1.Canny边缘检测:Canny边缘检测是一种经典的边缘检测算法,它被广泛应用于图像处理领域。该方法结合了多个步骤,包括高斯滤波、计算梯度、非最大值抑制和
- 六、图像的几何变换
云峰天际
计算机视觉人工智能opencv人工智能计算机视觉
文章目录前言一、镜像变换二、缩放变换前言在计算机视觉中,图像几何变换是指对图像进行平移、旋转、缩放、仿射变换和镜像变换等操作,以改变图像的位置、尺寸、形状或视角,而不改变图像的内容。这些变换在图像处理、模式识别、机器人视觉、医学影像处理等领域具有广泛的应用。通过图像几何变换,可以实现图像的校正、配准、增强和重建等功能,为后续的图像分析和理解提供了重要的基础。一、镜像变换水平镜像(水平翻转)其原理是
- Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络
AI浩
高质量人类CV论文翻译深度学习人工智能计算机视觉
摘要在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存在局限,这对于精确分割至关重要。受到Mamba架构的启发,该架构因其处理长序列和全局上下文信息的能力以及作为国家空间模型(SSM)的增强计算
- python 人脸检测器
laocooon523857886
计算机视觉opencv图像处理
importcv2#加载人脸检测器关键文件haarcascade_frontalface_default.xmlface_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')#读取图像分析图片ren4.pngimage=cv2.imread('ren4.png')gray=cv2.cvtColor(image,cv
- 【图像配准】CVPRW21 - 深度特征匹配 DFM
我是大黄同学呀
读点论文-其他深度学习计算机视觉人工智能
文章目录相识相知回顾收录于CVPR2021ImageMatchingWorkshop,github地址:https://github.com/ufukefe/DFM相识图像配准(ImageRegistration)是计算机视觉领域中的一项重要任务,其旨在将不同角度/时间/模态等条件下获取的两张或多张图像进行匹配、叠加。图像匹配的核心在于找到每两幅图像间的对应关系(可以通过这个对应关系进行相互映射)
- DFM-无监督图像匹配
alex1801
深度学习图像配准匹配图像拼接
DFM:APerformanceBaselineforDeepFeatureMatching(深度特征匹配的性能基准)2021.06.14摘要提出了一种新的图像匹配方法,利用现成的深度神经网络提取的学习特征来获得良好的图像匹配效果。该方法使用预训练的VGG结构作为特征提取器,不需要任何额外的训练来提高匹配。灵感来自心理学领域成熟的概念,如心理旋转,初始扭曲是作为初步几何变换估计的结果而执行的(an
- ICRA2023 | 通用、自动和无标定目标的Lidar-Camera外参标定工具箱
自动驾驶之心
数码相机人工智能
原文链接:https://arxiv.org/pdf/2302.05094.pdf本文介绍了一种开源的激光雷达相机标定工具箱,该工具箱适用于激光雷达和相机投影模型,只需要一对激光雷达和相机数据,而无需标定目标,并且是全自动的。对于自动初始猜测估计,本文使用SuperGlue图像匹配pipeline来查找LiDAR和相机数据之间的2D-3D对应关系,并通过RANSAC估计LiDAR相机变换。给定初始
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- 基于拉普拉斯金字塔的高分辨率眼底图像视网膜血管实时分割matlab仿真
fpga和matlab
MATLAB板块2:图像-特征提取处理拉普拉斯金字塔高分辨率眼底图像视网膜血管实时分割matlab
目录1.拉普拉斯金字塔原理2.基于拉普拉斯金字塔的血管分割方法3.MATLAB程序3.实验结果与分析视网膜血管分割是眼底图像分析中的关键步骤,对于诊断视网膜病变等眼部疾病具有重要意义。本文提出了一种基于拉普拉斯金字塔的高分辨率眼底图像视网膜血管实时分割方法。该方法首先利用拉普拉斯金字塔对眼底图像进行多尺度分解,然后在不同尺度上提取血管特征,并通过融合多尺度信息实现血管的精确分割。眼底图像是诊断眼部
- Ps:统计
MediaTea
Ps菜单:文件/脚本/统计Scripts/Statistics统计Statistics脚本命令提供了一种高效的方法来处理和分析大量图像,使用户能够自动执行复杂的图像分析任务,并在多个图像间应用统计学方法。这个功能极大地扩展了Photoshop在科学研究、图像编辑和其他领域的应用潜力。◆◆◆使用方法与技巧相对于“将文件载入堆栈”脚本命令,“统计”脚本命令不仅可以将多个图像文件载入为同一文档中的不同图
- Coreline Soft x Incredibuild
Incredibuild
C++DevOpsc++devopswindows
关于CorelineSoftCorelineSoft是一家专注于先进医疗人工智能成像软件技术的上市公司,致力于提高疾病诊断的准确性和效率。Corelinesoft成立于2012年,总部位于韩国首尔,目前CorelineSoft业务已向全球范围内扩展,在德国法兰克福和美国乔治亚州亚特兰大设有办事处。CorelineSoft的核心旗舰产品是AVIEW,一款创新性的人工智能技术驱动的医疗图像分析软件。A
- OpenCV 笔记(19):霍夫直线检测
Java与Android技术栈
opencv笔记计算机视觉人工智能
1.霍夫空间和霍夫变换1.1霍夫空间霍夫空间(Houghspace)是一种用于图像分析的特征空间,用于描述图像中具有相同形状的线段或曲线。霍夫空间是指将图像空间中的点映射到参数空间后形成的空间。参数空间的维度由形状的描述参数的个数决定。例如,对于直线检测,参数空间的维度为2,其中一个维度表示直线的斜率,另一个维度表示直线的截距。对于圆检测,参数空间的维度为3,这三个参数分别是圆心坐标和圆的半径。霍
- 机器学习系列——(十九)层次聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在机器学习和数据挖掘领域,聚类算法是一种重要的无监督学习方法,它试图将数据集中的样本分组,使得同一组内的样本相似度高,不同组间的样本相似度低。层次聚类(HierarchicalClustering)是聚类算法中的一种,以其独特的层次分解方式,在各种应用场景中得到广泛应用,如生物信息学、图像分析、社交网络分析等。一、概述层次聚类算法主要分为两大类:凝聚的层次聚类(AgglomerativeHie
- 异源图像匹配
吧啦_吧啦
姓名:刘倩学号;19021210889【嵌牛导读】:光学图像和SAR图像的成像机理不同,两者之间往往存在较大的灰度差异,由于我国现有的表技术条件的限制,多采用光学图像作为基准图,SAR图像作为匹配实时图。基于以上两者的差异,所以传统的基于灰度信息特征描述的图像匹配方法不再适用。因此,研究精度高,实时性强的光学与SAR图像匹配方法对精确制导武器的研究具有重要的意义。【嵌牛鼻子】:SAR图像光学图像图
- 机器学习系列——(十七)聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在当今数据驱动的时代,机器学习已经成为了解锁数据潜能的关键技术之一。其中,聚类作为机器学习领域的一个重要分支,广泛应用于数据挖掘、模式识别、图像分析等多个领域。本文旨在深入探讨聚类技术的原理、类型及其应用,为读者提供一个全面而深入的了解。一、什么是聚类?聚类是一种无监督学习(UnsupervisedLearning)技术,它的目标是将相似的对象分组到一起,形成簇(Cluster)。与有监督学习
- 二值图像分析:轮廓形状逼近与拟合
stdcoutzrh
OpenCV与Qt轮廓逼近
二值图像分析:轮廓形状逼近与拟合1.二值图像轮廓逼近1.1轮廓逼近函数1.2轮廓逼近算法原理分析2.代码实践3.最小外接圆拟合4.最大内接圆拟合4.1点轮廓位置测试函数4.2获取轮廓最大内接圆1.二值图像轮廓逼近1.1轮廓逼近函数在[二值图像分析:二值图像轮廓提取],通过findContours()函数可以找到二值图像中的轮廓信息。对图像二值图像的每个轮廓,OpenCV提供了一个函数approxP
- 图像处理入门:OpenCV的基础用法解析
kadog
ByGPT图像处理opencv人工智能计算机视觉
图像处理入门:OpenCV的基础用法解析引言OpenCV的初步了解深入理解OpenCV:计算机视觉的开源解决方案什么是OpenCV?OpenCV的主要功能1.图像处理2.图像分析3.结构分析和形状描述4.动态分析5.三维重建6.机器学习7.目标检测OpenCV的应用场景OpenCV的安装基本图像操作图像的读取与显示图像的基本信息图像的保存图像处理技巧图像转换边缘检测特征检测与匹配引言OpenCV(
- Swin-Unet: Unet-like Pure Transformer forMedical Image Segmentation(用于医学图像分割的纯U型transformer)
我在努力学习分割(禁止说我水平差)
transformer深度学习人工智能1024程序员节
本文的翻译是参考的:[Transformer]Swin-Unet:Unet-likePureTransformerforMedicalImageSegmentation_unet-likepuretransformer-CSDN博客方便自己学习摘要:在过去的几年中,卷积神经网络(cnn)在医学图像分析方面取得了里程碑式的进展。特别是基于u型结构和跳跃连接的深度神经网络在各种医学图像任务中得到了广泛
- [AIGC] 计算机视觉(CV)技术的优势:
程序员三木
AIAIGC计算机视觉人工智能
计算机视觉(CV)技术的优势:高效性:计算机视觉技术可以快速地处理大量的图像和视频数据,比人类更高效。它可以在短时间内完成复杂的图像分析和对象识别任务。可靠性:相对于人类,计算机视觉技术可以提供更加准确和一致的结果。它可以消除人为因素的干扰,从而提高数据处理和分析的可靠性。自动化:计算机视觉技术可以实现自动化的图像处理和分析,无需人工干预。这可以大幅度提高工作效率,并减少人力成本。大规模处理:计算
- OpenCV4图像处理--二值图像联通组件扫描
Mzcc_bbms
OPENCV
联通组件扫描图像联通组件标记概念扫描联通组件的常见算法思考图像联通组件标记概念图像联通组件(CCL)四领域与八领域扫描联通组件的常见算法概念联通组件标记算法(connectedcomponentlabelingalgorithm)是图像分析中最常用的算法之一,算法的实质是扫描二值图像的每个像素点,对于像素值相同的而且相互连通分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分