- OpenCV颜色矩哈希算法------cv::img_hash::ColorMomentHash
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该类实现了颜色矩哈希算法(ColorMomentHash),用于图像相似性比较。它基于图像在HSV颜色空间中的颜色矩统计特征来生成哈希值,对颜色分布的变化具有较好的鲁棒性。适用于以下场景:图像检索图像去重水印检测色彩变化较大的图像匹配公共成员函数compute(I
- 海思平台ISP系列从零开始:一、PQTools工具的使用总结
斟茶兵
海思平台基础的Imagesensor问题分析isp嵌入式
海思平台ISP系列:一.PQTools工具使用方法正所谓工欲善其事必先利其器,磨刀不误砍柴工,想要在海思平台开始IQ,就得利用海思SDK中提供的PQTools工具,这个工具作的很好的,里边有很多图像分析的工具,下面就开始介绍:工具入式如何使用:在海思的SDK开发包中,包含了PQTools使用的软件,以我使用的Hi33516DV300为例,PQTools工具包的目录如下:Hi3516CV500R00
- (五)PS识别:压缩痕迹挖掘-压缩量化表与 DCT 系数分析
超龄超能程序猿
机器学习python图像处理人工智能计算机视觉
(一)PS识别:Python图像分析PS识别之道(二)PS识别:特征识别-直方图分析的从原理到实现(三)PS识别:基于噪声分析PS识别的技术实现(四)PS识别:基于边缘纹理检测分析PS识别的技术实现一介绍本文将介绍一种基于量化表分析和DCT系数分析的图片PS检测方法,帮助你判断图片是否经过处理。二实现原理量化表分析在JPEG图片的压缩过程中,量化表起着关键作用。不同的软件或处理操作可能会改变量化表
- 图像分割技术详解:从原理到实践
lanjieying
本文还有配套的精品资源,点击获取简介:图像分割是图像处理领域将图像分解为多个区域的过程,用于图像分析、特征提取等。文章介绍了图像分割的原理,并通过一个将图像划分为2*4子块的示例,展示了如何使用Python和matplotlib库中的tight_subplot函数进行图像分割和展示。文章还探讨了图像分割在不同领域的应用,以及如何在机器学习项目中作为数据预处理步骤。1.图像分割基本概念在图像处理领域
- MATLAB骨架化形态学运算专题详解
本文还有配套的精品资源,点击获取简介:骨架化是一种减少图像复杂度、提取主要结构的技术,在MATLAB中通过bwmorph函数进行。本专题涵盖了骨架化的基本原理、相关函数、实际应用以及如何通过形态学操作如膨胀、腐蚀、开闭运算来优化结果。骨架化在医学图像分析、工业检测和生物图像分析等领域有广泛应用。掌握骨架化技术有助于提升图像处理的效率和准确性。1.骨架化概念与重要性1.1骨架化的定义与基本概念在数字
- 匹配一切 学习笔记2025
AI算法网奇
python宝典计算机视觉人工智能
目录匹配一切MASAdemo:图像匹配roma匹配一切MASAMatchingAnythingBySegmentingAnything[CVPR24Highlight]git地址:https://github.com/siyuanliii/masaMethodBaseNovelmodelTETAAssocATETAAssocAOVTrack(CVPR23)35.536.927.833.6-<
- Halcon 初步了解
科学的发展-只不过是读大自然写的代码
图形编程c#视觉处理Halcon
1.Halcon概述Halcon是德国MVTec公司开发的一套完善的机器视觉算法包,也是一款功能强大的视觉处理软件,为工业自动化领域提供了全面的解决方案。它拥有应用广泛的机器视觉集成开发环境,提供了一套丰富的图像处理和机器视觉算法,可以在各种工业应用中进行图像分析、目标检测、测量、定位、识别等任务。Halcon的核心功能包括图像处理、特征提取与匹配、3D视觉、深度学习、条码识别、OCR识别以及视觉
- 2025年最值得关注的十大OCR模型,技术进化与应用突破全面解析!
蜗牛沐雨
ocr自动化
光学字符识别(OCR)技术已经完成了从“慢、误差高、功能单一”的旧时代,向“快速、精准、多场景全覆盖”的新纪元转变。今天,OCR不再是简单的图像转文本工具,而是支撑智能办公、文档自动化、跨语言内容处理以及视觉理解的核心技术。尤其在2025年,技术格局发生了显著变化:模型更轻量,支持更复杂的文本结构识别,具备强大的多语言和多模态处理能力,能应对实时场景识别甚至复杂的工业图像分析。本文整合了GitHu
- 基于MFC的遥感图像匹配程序设计
HH予
嵌入式驱动工程项目开发mfcc++
基于MFC的遥感图像匹配程序设计下面我将为你设计一个使用MFC实现的遥感图像匹配程序,能够显示图片并在图上标注匹配点位置,支持地面点坐标的输入和输出。程序框架设计1.创建MFC项目使用VisualStudio创建一个MFC应用程序项目选择"单文档"界面勾选"文档/视图体系结构支持"2.主界面设计//在CMainFrame中添加以下成员变量classCMainFrame:publicCFrameWn
- Java医学图像处理系统实战源码剖析
好学的Jack
本文还有配套的精品资源,点击获取简介:本项目详细介绍了基于Java的医学图像处理系统,通过使用Java提供的图像处理库和多线程技术,实现了医疗图像的读取、预处理、分析、分割、存储及报告生成等关键功能。系统不仅支持多种图像格式和数据库集成,还考虑了用户界面设计和数据安全性,为医疗领域的图像分析需求提供了解决方案。学生和开发者可通过源码学习和实践,深入了解如何构建一个功能全面的医学图像处理平台。1.J
- 中科亿海微SoM模组——AI图像推理解决方案
随着AI技术的快速发展,AI图像推理作为一种高效、智能的图像处理技术,已成为推动各行业数字化转型和智能化升级的关键。它凭借强大的图像处理和推理能力,能够自动识别、分离和处理图像内容,为各行各业提供精准、高效的图像分析支持。极大提高了医疗影像、自动驾驶、智能安防、农业智能、无人机、人形机器人、物流管理等领域图像处理的效率和质量。本文介绍的中科亿海微基于FPGA+SoC架构的通用AI图像推理模组,主要
- 基于Python+OpenCV实现SIFT
2301_79809972
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与意义SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)是一种在计算机视觉中广泛应用的局部图像特征描述子。由于其具有尺度不变性、旋转不变性和对光照变化、仿射变换和噪声的鲁棒性,SIFT在图像匹配、物体识别、三维重建等领域
- 木材横切面与年轮曲线分割与竹签计数
QQ_1309399183
计算机视觉实战项目集锦图像分割人工智能计算机视觉目标检测深度学习YOLO竹签计数
这是一个用于训练YOLOv8深度学习分割模型的Python程序库,支持对千兆像素级图像进行全自动分析(本案例演示木材横切面与年轮中导管/射线结构的量化分析)开发工具与技术栈:Python・NumPy・YOLOv8目录结构图像裁剪模型训练图像分析快速开始引用说明许可协议图像裁剪:crop-images.ipynb从指定文件夹读取原始图像,将其裁剪为640×640的标准尺寸(YOLOv8默认输入尺寸)
- 图像匹配 像素跟踪MINIMA部署笔记
AI算法网奇
深度学习宝典笔记
0.MINIMA:ModalityInvariantImageMatching作者:XingyuJiang,JiangweiRen,ZizhuoLi,XinZhou,DingkangLiang,XiangBai机构:HuazhongUniversityofScienceandTechnology、WuhanUniversity原文链接:https://arxiv.org/abs/2412.1941
- 使用Halcon进行图像预处理的策略
AI_Guru人工智能
计算机视觉图像处理人工智能
图像预处理是机器视觉系统中的一个关键步骤,它有助于提高图像质量,从而使得后续的图像分析和特征提取更加准确。在Halcon中,图像预处理通常包括滤波、对比度增强、归一化、边缘增强等操作。以下是一些使用Halcon进行图像预处理的策略,以及相应的示例代码。图像预处理策略滤波:去除图像噪声,如高斯滤波、中值滤波等。对比度增强:提高图像的对比度,如直方图均衡化、对比度限制自适应直方图均衡化(CLAHE)。
- 图像匹配算法 笔记2025
AI算法网奇
深度学习宝典计算机视觉人工智能
目录1.RoMa(RobustDenseFeatureMatching,CVPR2024)OmniGlue2.Deep‑Image‑Matching(2024)3.OpenGlue️4.XFeat(CVPR2024)⚡5.LightGlue(ICCV2023)6.LiftFeat(ICRA2025)7.DMESA(2024)1.RoMa(RobustDenseFeatureMatching,CVP
- 图像匹配 像素跟踪roma
AI算法网奇
深度学习宝典计算机视觉图像匹配
目录roma算法模型下载:roma推理代码:roma算法模型下载:romatch/models/model_zoo/__init__.pyweight_urls={"romatch":{"outdoor":"https://github.com/Parskatt/storage/releases/download/roma/roma_outdoor.pth","indoor":"https://g
- 13 OpenCV 图像像素值统计
L7O7
OpenCVopencv人工智能计算机视觉
13图像像素值统计opencv知识点:图像像素最小/最大值-minMaxLoc()图像像素均值/标准差-meanStdDev()本课所解决的问题:如何获取图像像素的最小/最大值?如何获取图像像素的均值/标准差?图像像素统计值用途是什么?1.常用的像素值统计在图像分析的时候,我们经常需要对单通道图像的像素进行统计,以下4种是比较常用的最小值(min)最大值(max)平均值(mean)标准差(stan
- AI工具汇总
hzp666
机器学习AIAI工具集
序号类型AI工具名称入口功能1聊天/内容生成文心一言https://yiyan.baidu.com综合型AI:内容生成、文档分析、图像分析、图表制作、脑图……2通义千问https://tongyi.aliyun.com综合型AI:内容生成、文档分析、图像分析……3Kimi(月之暗面)https://kimi.moonshot.cn综合型AI:内容生成、文档分析、互联网搜索……4腾讯混元https:
- OpenCV+python:开闭操作
@迷途小书童
OpenCV/基本图像处理算法
1,开闭操作简介开操作:开操作=腐蚀+膨胀,输入图像+结构元素作用:主要是应用在二值图像分析中,灰度图像亦可;用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积.提取水平或竖直的线闭操作:开操作=膨胀+腐蚀,输入图像+结构元素作用:主要是应用在二值图像分析中,灰度图像亦可;用来填充物体内细小空洞、连接邻近物体、平滑其边界的同时并不明显改变其面积.2,开闭操作源代码imp
- 未来已来:AI技术的最新趋势与前沿探索
Mr' 郑
人工智能量子计算
在这个日新月异的时代,人工智能(AI)已经从科幻概念逐渐深入到我们日常生活的方方面面,其发展速度之快超乎想象。从基础的语音识别、图像分析到复杂的决策制定、自动驾驶,AI技术正以前所未有的力量推动着社会进步。本文将带您一同展望AI技术的未来发展方向,深入探讨量子计算、生物计算等新兴领域的前沿探索,以及它们如何重新定义AI的边界。量子计算:AI的新纪元理论基石量子计算,这一基于量子力学原理的计算模型,
- 基于 SIFT 对图像进行局部特征匹配附Matlab代码
Matlab科研工作室
matlab计算机视觉开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍图像匹配是计算机视觉领域的一项基础且关键的技术,它旨在寻找不同图像之间的对应关系,进而为物体识别、三维重建、图像拼接等高级应用提供坚实的基础。在众多的图像匹配方法中,局部特征
- 干货分享 | 关于 UNet 架构的8个热门面试问题
老唐777
人工智能机器学习深度学习计算机视觉图像处理面试python
前言UNet架构是专门为图像分割任务设计的深度学习模型。由于其能够处理高分辨率图像并生成准确的分割图,因此广泛应用于各种应用,例如医学图像分割、卫星图像分析和自动驾驶车辆中的目标检测。UNet非常适合多类图像分割任务,但可能需要平衡训练数据或使用概率分割图来处理类重叠或不平衡的类分布。本文主要介绍关于UNet架构的8个热门面试问题,希望对你有所帮助。资料分享正式开始之前,为了方便大家学习,我整理了
- YOLOv11助力地铁机场安检!!!一键识别刀具
野马算法创新
YOLO人工智能python深度学习
文末有完整代码出处随着现代社会的高速发展,交通工具和公共场所的安全管理面临着前所未有的挑战。尤其在机场、地铁、车站等公共安全检查点,如何提高安检效率、精准识别危险物品,成为了亟待解决的问题。在传统的安检过程中,X光图像分析通常依赖人工判断,不仅工作负担大,而且准确性和效率受限,特别是面对复杂多变的违禁物品形态时,容易出现漏检、误检的情况。因此,如何通过先进的技术手段提升安检的自动化、智能化水平,成
- 单目视觉测量及双目视觉测量
摆烂仙君
人工智能计算机视觉深度学习
一、单目视觉测量1.1原理部分讲解单目视觉系统通过采集图像,将图像转换为二维数据,然后对采集的图像进行模式识别,通过图像匹配算法识别行驶过程中的车辆、行人、交通标志等,最后依据目标物体的运动模式和定位技术,估算目标物体与本车的相对距离和相对速度。单目相机测距常用或者说实用的方法就是相似三角形法。这种方法假设我们有一个宽度为W的目标或者物体,然后我们将这个目标放在距离我们的相机为D的位置。我们用相机
- C/C++的OpenCV 进行图像梯度提取
whoarethenext
opencvc语言c++
使用C++/OpenCV进行图像梯度提取图像梯度表示图像中像素强度的变化率和方向。它是图像分析中的一个基本概念,广泛应用于边缘检测、特征提取和物体识别等任务。OpenCV提供了多种计算图像梯度的函数。本文将介绍几种常用的梯度算子及其在C++/OpenCV中的实现。预备知识在开始之前,请确保您已经安装了OpenCV,并且您的C++开发环境已经配置好可以链接OpenCV库。通常,我们需要包含以下头文件
- 基于块匹配的全景图像拼接系统
挂科边缘
MATLAB项目实战matlab计算机视觉人工智能
文章目录前言一、理论基础1.图像匹配基于灰度的匹配基于模板的匹配基于变换域的匹配基于特征的匹配2.图像融合二、程序实现1.设计GUI界面2.载入图片3.图像匹配4.图像拼接总结源码下载前言为了获得超宽视角、大视野、高分辨率的图像,人们采用传统方式为采用价格高昂的特殊摄像器材进行拍摄,采集图像并进行处理。近年来,随着数码相机、智能手机等经济适用型手持成像硬件设备的普及,人们可以对某些场景方便地获得离
- 【计算机视觉系列实战教程 (十二)】:图像分割(阈值分割threshold、分水岭算法watershed的使用步骤、洪水填充floodFill算法的使用)
还下着雨ZG
计算机视觉计算机视觉人工智能
1.图像分割概述(1)What(什么是图像分割)将图像划分为不同的子区域,使得同一子区域具有较高的相似性,不同的子区域具有明显的差异性(2)Why(对图像进行分割有什么作用)医学领域:将不同组织分割成不同区域帮助分析病情军事领域:通过对图像的分割,为自动目标识别提供参数,为飞行器或武器的精准导航提供依据遥感领域:通过遥感图像分析城市地貌、作物生长情况。此外,云系分析和天气预报都离不开图像分割交通领
- Hierarchical Sparse Subspace Clustering (HESSC): An Automatic Approach for Hyperspectral Image Analy
爱喝两碗汤
跨场景域适应遥感图像分类机器学习人工智能图像处理
分层稀疏子空间聚类(HESSC):一种用于高光谱图像分析的自动方法作者:KasraRafiezadehShahi1,∗,MahdiKhodadadzadeh1,LauraTusa1,PedramGhamisi1,RaimonTolosana-Delgado2,RichardGloaguen1德国弗莱贝格09599,赫尔姆霍兹-德累斯顿-罗森多夫中心(HZDR),赫尔姆霍兹弗莱贝格资源技术研究所(H
- OpenCV阈值处理完全指南:从基础到高级应用
巷955
opencv人工智能计算机视觉
引言阈值处理是图像处理中最基础、最常用的技术之一,它能够将灰度图像转换为二值图像,为后续的图像分析和处理奠定基础。本文将全面介绍OpenCV中的各种阈值处理方法,包括原理讲解、代码实现和实际应用场景。一、什么是阈值处理?阈值处理(Thresholding)是通过设定一个或多个阈值,将图像的像素值分为若干类的过程。对于灰度图像,通常是选择一个阈值,将像素分为"黑"和"白"两类,从而创建二值图像。数学
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分