特征选取之最大信息系数(MIC)

MIC(Maximal information coefficient)一个很神奇的东西,源自于2011年发在sicence上的一个论文。

学过统计的都知道,有相关系数这么一个东西,通常叫做r。但是其实应该叫做线性相关系数,应用领域还是很窄的。而MIC这个东西呢,首先比较general,不管是什么函数关系,都可以识别,换句话说,正弦函数和双曲线函数和直线,对这个系数而言是一样的。此外还有一点,那就是,如果没有噪音的直线关系和没有噪音的正弦函数关系,他们的MIC都是1,加上相同的噪音之后,如果线性关系的MIC变成0.7了,那么正弦函数关系的MIC也变成0.7,换句话说,噪音对MIC造成的影响与变量之间的函数关系无关。当然这一论证在一篇论文中被反驳了,或者说部分反驳了。

为了说明白这个方法,首先引入一个Mutual inforamtion的东西:

160816_PpNe_3437790.png

是这么定义的。这里x和y是两个联系的随机变量,这个系数也可以用来衡量相关性,但是有很多缺点。比如,非均一性。不过这点在后面的论文中被推翻了,或者说,局部推翻。

    p(x,y)是联合概率密度分布函数,想想就很难计算对不对,所以我们就要找一个办法来做这个事。怎么办呢?还记得蒙特卡洛么!这里有那么一点思想是这样的:

特征选取之最大信息系数(MIC)_第1张图片

      我们把两个 随机变量化成散点图,然后不断的用小方格子去分割。然后计算每个方格子里面的落入概率。在某种意义上,就可以估计出联合概率密度分布了。当然,只有在数据量是无穷的情况下我们才可以认为是真的就相等了。所以,导致随后是数据量越大,MIC越好。看看第一篇nature文章的名字就知道了,Large Data Sets哦!所以如果只有几百条数据,关网页洗洗睡吧。最后,MIC就是这么计算的:

    分母下面是什么意思呢?我们之前不是对散点图残忍的分割了好多块嘛,在X方向和Y方向上就有很多段了。所以|X|就是X方向共被分成了多少段的意思。Y方向也一样。

    前面还有一个限制条件,就是|X||Y|

转载于:https://my.oschina.net/u/3437790/blog/1519362

你可能感兴趣的:(特征选取之最大信息系数(MIC))