一、按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译
实验环境
Ubantu16.04 运行于VMware15.1上
依次执行以下命令
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.3.34.patch sudo apt install axel axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz xz -d linux-5.4.34.tar.xz tar -xvf linux-5.4.34.tar cd linux-5.4.34 patch -p1 < ../mykernel-2.0_for_linux-5.3.34.patch sudo apt install build-essential gcc-multilib sudo apt install qemu # install QEMU sudo apt install libncurses5-dev bison flex libssl-dev libelf-dev make defconfig # Default configuration is based on 'x86_64_defconfig' make -j$(nproc) qemu-system-x86_64 -kernel arch/x86/boot/bzImage
其中 wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.3.34.patch 出现连接失败的提示,于是使用了群内下载完成的文件
编译内核
用 mykernel-2.0_for_linux-5.4.34.patch 对 内核文件进行更新
使用make -j4命令编译时间10分钟
编译完成后可以在qmeu窗口观察到如下:
二、基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码
1.在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块(Process Control Block),也就是进程结构体。
/* * linux/mykernel/mypcb.h */ #define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*8 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ char stack[KERNEL_STACK_SIZE]; /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; //调度函数 void my_schedule(void);
2.对mymain.c进行修改,为进程的代码模拟一个个进程,时间片轮转调度。
tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].state = -1; task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movq %1,%%rsp\n\t" /* set task[pid].thread.sp to rsp */ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } void my_process(void) { int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
3.对myinterrupt.c进行修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度。
extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. */ void my_timer_handler(void) { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
4.重新编译后运行qemu
make defconfig make -j$(nproc) qemu-system-x86_64 -kernel arch/x86/boot/bzImage
三、简要分析操作系统内核核心功能及运行工作机制
1.系统启动后,运行mymain.c中的my_start_kernal, 进程0首先初始化,再初始化其他的进程。
2.myinterrupt.c中的my_timer_handler 函数每调用1000次,就去将全局变量my_need_sched的值修改为1
3.my_start_kernel中的while循环发现my_need_sched值变为1后,就进行进程的调度,完成进程的切换,以此实现进程切换。