- K-means聚类:解锁数据隐藏结构的钥匙
陈辰学长
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- 与机器学习的邂逅--自适应神经网络结构的深度解析
想成为高手499
机器学习与人工智能机器学习神经网络人工智能
引言随着人工智能的发展,神经网络已成为许多应用领域的重要工具。自适应神经网络(AdaptiveNeuralNetworks,ANN)因其出色的学习能力和灵活性,逐渐成为研究的热点。本文将详细探讨自适应神经网络的基本概念、工作原理、关键技术、C++实现示例及其应用案例,最后展望未来的发展趋势。自适应神经网络的基本概念什么是自适应神经网络?自适应神经网络是一种能够根据输入数据的变化和环境的动态特性自动
- PostgreSQL - pgvector 插件构建向量数据库并进行相似度查询
花千树-010
RAG数据库postgresqlAI编程
在现代的机器学习和人工智能应用中,向量相似度检索是一个非常重要的技术,尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在PostgreSQL中安装pgvector插件,用于存储和检索向量数据,并展示如何通过Python脚本向数据库插入向量并执行相似度查询。一、安装PostgreSQL并配置pgvector插件1.安装PostgreSQL首先,确保你已经安装了PostgreSQL。可以
- 未来教育:AI知识库如何重塑学习体验
知识管理知识库知识库软件
在科技日新月异的今天,教育领域正经历着前所未有的变革。人工智能(AI)技术的快速发展,特别是AI知识库的广泛应用,正在重塑我们的学习体验,使之变得更加高效、个性化和智能化。本文将深入探讨AI知识库如何影响未来教育,以及它如何为学习者提供前所未有的学习体验。一、AI知识库:教育领域的智能助手AI知识库,作为结合了人工智能技术的知识管理系统,不仅能够存储和处理海量信息,还能通过自然语言处理、机器学习等
- 【TVM 教程】内联及数学函数
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:TianqiChen尽管TVM支持基本的算术运算,但很多时候,也需要复杂的内置函数,例如exp取指函数。这些函数是依赖target系统的,并且在不同target平台中可能具有不同的名称。本教程会学习到如何调用这些target-spe
- mindspore编译报错
小乐快乐
深度学习神经网络
1、重新创建个工程后无法正常运行,2、使用代码为:华为提供的机器学习监督学习中的代码[quote][size=2][url=forum.php?mod=redirect&goto=findpost&pid=1364937&ptid=165780][color=#999999]回复:HS12发表于2021-10-3018:16[/color][/url][/size]报错信息
- ai照片放大python源码_AI新时代-大牛教你使用python+Opencv完成人脸解锁(附源码)...
weixin_39639505
ai照片放大python源码
好吧,伙计们,我回来了。说我拖更不写文章的可以过来用你的小拳拳狠命地捶我胸口....那么今天我们来讲关于使用python+opencv+face++来实现人脸验证及人脸解锁。代码量同样不多,你可以将这些代码运用在其它一些智能领域,如智能家居,进门的时候判断你是谁,也可以加入机器学习判断来的人是客人还是熟人。在讲之前我们会先适当的拓扑一下关于人脸识别的知识点。OK废话少说下面开始正是话题。解锁原理:
- 线性回归:从基础到进阶的全面解析
tester Jeffky
大模型线性回归机器学习算法
线性回归:从基础到进阶的全面解析线性回归是机器学习中最基本的算法之一,广泛应用于预测和分析。本文将详细介绍线性回归的基本概念、数学原理、实现方法以及在实际应用中的注意事项。我们将通过丰富的代码示例来展示如何从头开始构建一个简单的线性回归模型,并逐步深入到更复杂的场景。1.线性回归的基本概念1.1什么是线性回归?线性回归是一种用于建模两个或多个变量之间关系的统计方法。它假设因变量(目标变量)与一个或
- 什么是多模态机器学习:跨感知融合的智能前沿
非凡暖阳
人工智能神经网络
在人工智能的广阔天地里,多模态机器学习(MultimodalMachineLearning)作为一项前沿技术,正逐步解锁人机交互和信息理解的新境界。它超越了单一感官输入的限制,通过整合视觉、听觉、文本等多种数据类型,构建了一个更加丰富、立体的认知模型,为机器赋予了接近人类的综合感知与理解能力。本文将深入探讨多模态机器学习的定义、核心原理、关键技术、面临的挑战以及未来的应用前景,旨在为读者勾勒出这一
- AI大模型如何赋能电商行业,引领变革
虞书欣的C
人工智能开发语言
•个性化推荐:利用机器学习算法分析用户的历史购买记录、浏览行为和喜好,生成个性化的产品推荐列表,提升用户的购买意愿和满意度。•优化用户体验:•智能搜索引擎:运用自然语言处理技术,优化搜索引擎,让用户能够通过自然语言进行搜索。•虚拟客服:通过聊天机器人和语音助手,提供24/7的客户支持,快速解答用户咨询。•图像识别:利用计算机视觉技术,用户可以通过拍照识别商品,快速找到相似商品或进行排版搭配推荐。•
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- 【机器学习:二十六、决策树】
KeyPan
机器学习机器学习决策树人工智能算法深度学习数据挖掘
1.决策树概述决策树是一种基于树状结构的监督学习算法,既可以用于分类任务,也可以用于回归任务。其主要通过递归地将数据划分为子集,从而生成一个具有条件结构的树模型。核心概念节点(Node):每个节点表示一个特定的决策条件。根节点(RootNode):树的起点,包含所有样本。分支(Branch):每个分支代表一个条件划分的结果。叶节点(LeafNode):终止节点,表示最终的决策结果。优点直观可解释:
- 机器学习数学基础-极值和最值
华东算法王(原聪明的小孩子
小孩哥解析宋浩微积分机器学习算法人工智能
极值和最值极值和最值是数学中关于函数变化的重要概念,它们描述了函数在某些点附近或在整个定义域内的“最大”或“最小”行为。理解极值和最值对优化问题、函数分析、物理建模等领域有重要的应用。1.极值(LocalExtrema)极值是指函数在某个区间内的某一点取得的局部最大值或最小值。(1)局部最大值(LocalMaximum)一个函数在某点(x=c)取得局部最大值,意味着存在一个包含(c)的小区间,使得
- 17-7 向量数据库之野望7 - PostgreSQL 和pgvector
拉达曼迪斯II
AIGC学习数据库管理工具AI创业数据库postgresql人工智能机器学习AIGC搜索引擎
PostgreSQL是一款功能强大的开源对象关系数据库系统,它已将其功能扩展到传统数据管理之外,通过pgvector扩展支持矢量数据。这一新增功能满足了对高效处理高维矢量数据日益增长的需求,这些数据通常用于机器学习、自然语言处理(NLP)和推荐系统等应用。https://github.com/mazzasaverio/find-your-opensource-project什么是pgvector?
- 【MySQL】Mysql数据库导入导出sql文件、备份数据库、迁移数据库
程序员洲洲
数据库数据库mysql导入导出sqlsql文件备份迁移
本文摘要:本文提出了xxx的实用开发小技巧。作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深度学习从0到1系列文章。同时洲洲已经建立了程序员技术交流群,如果您感兴趣,可以私信我加入我的社群,也可以直接vx联系(文末有名片)v:bdizztt随时
- 【Python机器学习】无监督学习——K-均值聚类算法
zhangbin_237
Python机器学习机器学习算法pythonkmeansk-means均值算法
聚类是一种无监督的学习,它将相似的对象归到同一簇中,它有点像全自动分类。聚类方法几乎可以应用于所有的对象,簇内的对象越相似,聚类的效果越好。K-均值聚类算法就是一种典型的聚类算法,之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。簇识别给出聚类结果的含义,假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么。聚类与分类的最大不同在
- 【Python】已解决:WARNING: pip is configured with locations that require TLS/SSL, however the ssl module i
屿小夏
pythonpipssl
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 机器学习-期末测试
难以触及的高度
机器学习python人工智能
机器学习-期末测试线性回归1.代码展示#coding=UTF-8#拆分训练集和测试集importmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_split#是线性回归类是sklearn写好的根据梯度下降法fromsklearn.linear_modelimportLinearRegressionimportpand
- 机器学习的介绍
2201_75874206
机器学习人工智能
目录1.机器学习的定义2.机器学习的原理3.机器学习的方法4.机器学习的分类5.机器学习的评估6.机器学习的应用场景7.机器学习与人工智能的关系结论机器学习在自然语言处理中的最新应用和技术是什么?如何评估机器学习模型的性能,除了交叉验证、MSE和RMSE外,还有哪些其他重要的指标?在金融风险管理中,机器学习如何帮助预测市场趋势和信用风险?市场趋势预测信用风险评估机器学习与人工智能之间的关系在未来发
- Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题
Loving_enjoy
论文深度学习计算机视觉人工智能
###Kaggle欺诈检测:使用生成对抗网络(GAN)解决正负样本极度不平衡问题####引言在金融领域中,欺诈检测是一项至关重要的任务。然而,欺诈交易数据往往呈现出正负样本极度不平衡的特点,这给机器学习模型的训练带来了挑战。传统的分类算法在面对这种不平衡数据时,往往会导致模型对多数类(正常交易)过拟合,而对少数类(欺诈交易)的识别能力较差。为了解决这个问题,生成对抗网络(GAN)提供了一种有效的手
- 一文读懂:无监督学习与有监督学习的区别与应用
码上飞扬
学习
在机器学习的世界里,无监督学习和有监督学习是两个最为常见且重要的概念。理解这两者的区别和应用场景,不仅有助于我们选择合适的算法和模型,还能帮助我们更好地解决实际问题。那么,什么是无监督学习和有监督学习呢?本文将带你详细了解这两种学习方式的定义、区别以及典型应用。目录无监督学习是什么?有监督学习是什么?无监督学习与有监督学习的主要区别无监督学习的典型应用有监督学习的典型应用如何选择合适的学习方法?1
- Spark Livy 指南及livy部署访问实践
house.zhang
大数据-Spark大数据
背景:ApacheSpark是一个比较流行的大数据框架、广泛运用于数据处理、数据分析、机器学习中,它提供了两种方式进行数据处理,一是交互式处理:比如用户使用spark-shell,编写交互式代码编译成spark作业提交到集群上去执行;二是批处理,通过spark-submit提交打包好的spark应用jar到集群中进行执行。这两种运行方式都需要安装spark客户端配置好yarn集群信息,并打通集群网
- C#遇见TensorFlow.NET:开启机器学习的全新时代
墨夶
C#学习资料1机器学习c#tensorflow
在当今快速发展的科技世界里,机器学习(MachineLearning,ML)已经成为推动创新的重要力量。从个性化推荐系统到自动驾驶汽车,ML的应用无处不在。对于那些习惯于使用C#进行开发的程序员来说,将机器学习集成到他们的项目中似乎是一项具有挑战性的任务。但随着TensorFlow.NET的出现,这一切变得不再困难。今天,我们将一起探索如何利用这一强大的工具,在熟悉的.NET环境中轻松构建、训练和
- 深入探索Python编程技术:从入门到精通的全方位学习指南
小码快撩
python开发语言
引言在当今信息技术飞速发展的时代,Python以其简洁优雅、功能强大、易于上手的特点,成为了众多开发者和初学者首选的编程语言。无论是数据科学、机器学习、Web开发、自动化脚本编写,还是桌面应用开发,Python都能发挥其独特优势,帮助开发者高效完成任务。本文旨在为Python学习者提供一个全面的学习路径与关键知识点概述,助您快速掌握这门强大的编程语言。一、基础语法1.变量定义与数据类型示例代码:#
- 从零开始的 AI Infra 学习之路
SSS不知-道
MLSys人工智能深度学习pytorch
从零开始的AIInfra学习之路文章目录从零开始的AIInfra学习之路一、概述二、AI算法应用2.1机器学习2.2深度学习2.3LLM三、AI开发体系3.1编程语言四、AI训练框架&推理引擎4.1PyTorch4.2llama.cpp4.3vLLM五、AI编译&计算架构5.1CUDA5.2CANN六、AI硬件&体系结构6.1INVIDIAGPU6.2AscendNPU一、概述AIInfra(AI
- python 特征选择方法_【来点干货】机器学习中常用的特征选择方法及非常详细的Python实例...
Blair Long
python特征选择方法
花费了很长时间整理编辑,转载请联系作者授权,违者必究。特征选择(Featureselection)是在构建预测模型的过程中减少输入变量的一个过程。它是机器学习中非常重要的一步并在很大程度上可以提高模型预测精度。这里我总结了一些机器学习中常见的比较有用的特征选择方法并附上相关python实现code。希望可以给大家一些启发。首先,我们为什么要进行特征选择呢?它有以下几个优点:减少过拟合:冗余数据常常
- chatgpt赋能python:Python群发微信消息:解决方案
suimodina
ChatGptpythonchatgpt微信计算机
Python群发微信消息:解决方案肆无忌惮的群发微信消息,是否是你目前所需的解决方案?如果是,那么你来对地方了。Python是一门十分强大的编程语言,广泛用于各种人工智能、计算机视觉、机器学习等领域。Python可以用于开发各种应用程序,它也可以用于批量处理和发送微信消息。本文将概述如何用Python发送微信消息。我们将介绍用Python实现微信消息的流程和步骤,并提供一些有关如何使用Python
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- ASPICE 4.0引领自动驾驶未来:机器学习模型的特点与实践
亚远景aspice
机器学习自动驾驶人工智能
ASPICE4.0-ML机器学习模型是针对汽车行业,特别是在汽车软件开发中,针对机器学习(MachineLearning,ML)应用的特定标准和过程。ASPICE(AutomotiveSPICE)是一种基于软件控制的系统开发过程的国际标准,旨在提升软件开发过程的质量、效率和可靠性。ASPICE4.0中的ML模型部分则进一步细化了机器学习在汽车软件开发中的具体要求和流程。以下是对ASPICE4.0-
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D