singleflight
包主要是用来做并发控制,整个包的核心代码不到100行,充分利用到了map
和WaitGroup
的特性。
常见的场景比如防止 缓存击穿
,我们可以来模拟一下这种场景:
缓存击穿:缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
package main
import (
"errors"
"log"
"sync"
"golang.org/x/sync/singleflight"
)
var errorNotExist = errors.New("not exist")
func main() {
var wg sync.WaitGroup
wg.Add(10)
//模拟10个并发
for i := 0; i < 10; i++ {
go func() {
defer wg.Done()
data, err := getData("key")
if err != nil {
log.Print(err)
return
}
log.Println(data)
}()
}
wg.Wait()
}
//获取数据
func getData(key string) (string, error) {
data, err := getDataFromCache(key)
if err == errorNotExist {
//模拟从db中获取数据
data, err = getDataFromDB(key)
if err != nil {
log.Println(err)
return "", err
}
//TOOD: set cache
} else if err != nil {
return "", err
}
return data, nil
}
//模拟从cache中获取值,cache中无该值
func getDataFromCache(key string) (string, error) {
return "", errorNotExist
}
//模拟从数据库中获取值
func getDataFromDB(key string) (string, error) {
log.Printf("get %s from database", key)
return "data", nil
}
其中通过 getData(key)
方法获取数据,逻辑是:
先尝试从cache中获取
如果cache中不存在就从db中获取
我们模拟了10个并发请求,来同时调用 getData
函数,执行结果如下:
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
2020/03/08 17:13:11 get key from database
2020/03/08 17:13:11 data
可以看得到10个请求都是走的db,因为cache中不存在该值,当我们利用上 singlefligth
包, getData
改动一下:
import "golang.org/x/sync/singleflight"
var g singleflight.Group
//获取数据
func getData(key string) (string, error) {
data, err := getDataFromCache(key)
if err == errorNotExist {
//模拟从db中获取数据
v, err, _ := g.Do(key, func() (interface{}, error) {
return getDataFromDB(key)
//set cache
})
if err != nil {
log.Println(err)
return "", err
}
//TOOD: set cache
data = v.(string)
} else if err != nil {
return "", err
}
return data, nil
}
执行结果如下,可以看得到只有一个请求进入的db,其他的请求也正常返回了值,从而保护了后端DB。
2020/03/08 17:18:16 get key from database
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
2020/03/08 17:18:16 data
singleflight
在 golang.org/x/sync/singleflight
项目下,对外提供了以下几个方法
//Do方法,传入key,以及回调函数,如果key相同,fn方法只会执行一次,同步等待
//返回值v:表示fn执行结果
//返回值err:表示fn的返回的err
//第三个返回值shared:表示是否是真实fn返回的还是从保存的map[key]返回的,也就是共享的
func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {
//DoChan方法类似Do方法,只是返回的是一个chan
func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result {
//暂时未用到:设计Forget 控制key关联的值是否失效,默认以上两个方法只要fn方法执行完成后,内部维护的fn的值也删除(即并发结束后就失效了)
func (g *Group) Forget(key string) {
代码也很简单,我们打开上看下,截取了部分:singleflight/singleflight.go
package singleflight // import "golang.org/x/sync/singleflight"
import "sync"
// call is an in-flight or completed singleflight.Do call
type call struct {
wg sync.WaitGroup
// These fields are written once before the WaitGroup is done
// and are only read after the WaitGroup is done.
//val和err用来记录fn发放执行的返回值
val interface{}
err error
// forgotten indicates whether Forget was called with this call's key
// while the call was still in flight.
// 用来标识fn方法执行完成之后结果是否立马删除还是保留在singleflight中
forgotten bool
// These fields are read and written with the singleflight
// mutex held before the WaitGroup is done, and are read but
// not written after the WaitGroup is done.
//dups 用来记录fn方法执行的次数
dups int
//用来记录DoChan中调用次数以及需要返回的数据
chans []chan<- Result
}
// Group represents a class of work and forms a namespace in
// which units of work can be executed with duplicate suppression.
type Group struct {
mu sync.Mutex // protects m
m map[string]*call // lazily initialized
}
// Do executes and returns the results of the given function, making
// sure that only one execution is in-flight for a given key at a
// time. If a duplicate comes in, the duplicate caller waits for the
// original to complete and receives the same results.
// The return value shared indicates whether v was given to multiple callers.
func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {
g.mu.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
//check map是否已经存在值
if c, ok := g.m[key]; ok {
c.dups++
g.mu.Unlock()
c.wg.Wait()
return c.val, c.err, true
}
c := new(call)
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
g.doCall(c, key, fn)
return c.val, c.err, c.dups > 0
}
//执行fn方法,并且wg.Done
// doCall handles the single call for a key.
func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) {
c.val, c.err = fn()
c.wg.Done()
...
}
在Do方法中主要是通过waitgroup来控制的,主要流程如下:
在Group中设置了一个map,如果key不存在,则实例化call(用来保存值信息),并将key=>call的对应关系存入map中(通过mutex保证了并发安全)
如果已经在调用中则key已经存在map,则wg.Wait
在fn执行结束之后(在doCall方法中执行)执行wg.Done
卡在第2步的方法得到执行,返回结果
其他的DoChan方法也是类似的逻辑,只是返回的是一个chan。
文中用到的实例代码放在github上:https://github.com/go-demo/singleflight-demo