记一次Kafka消费能力低,重新分配节点问题优化

         目前在做一个车联网APP项目。 项目中历史轨迹的处理模式为kafka推送给我车辆报文,然后我自行判断车辆熄火点火来进行历史轨迹行程的保存。

       项目开始车辆较少,每次kafka推送到我的后端,然后我进行处理轨迹开始的插入和轨迹结束的保存就行了,但是最近发现生产环境的kafka老是出现这样的错误:

2018-07-12 00:06:59.910 [messageListenerContainer_realtime-kafka-consumer-1] INFO  o.a.k.c.consumer.internals.AbstractCoordinator:  Marking the coordinator 2147483645 dead.

2018-07-12 00:07:00.014 [messageListenerContainer_realtime-kafka-consumer-1] INFO  o.a.k.c.consumer.internals.AbstractCoordinator:  Attempt to join group broker4 failed due to unknown member id, resetting and retrying.

2018-07-12 00:07:01.204 [messageListenerContainer_open-kafka-consumer-1] INFO  o.a.k.c.consumer.internals.AbstractCoordinator:  Attempt to heart beat failed since the group is rebalancing, try to re-join group.

大概意思就是:在kafka超时时间内,有些消息没有处理完成,consumer coordinator 会由于没有接受到心跳而挂掉  然后自动提交offset失败,然后重新分配partition给客户端 。接下来导致的问题是:

      1.由于自动提交offset失败,导致重新分配了partition的客户端又重新消费之前的一批数据

     2.接着consumer重新消费,又出现了消费超时,无限循环下去。

  然后我修改了kafka的配置(spring-kafka)

    1.enable.auto.commit=false; (关闭自动提交)

    2.session.timeout.ms=100000(增大session超时时间)

   3.request.timeout.ms=110000(socket握手超时时间,默认是3000 但是kafka配置要求大于session.timeout.ms时间)

  修改了以上配置以后,我认为不能从根本上解决消费能力低的问题,因为我这边后端处理涉及到 mongoDB查询和redis的频繁交互,而且已知生产环境mongoDB的内存较低,经过分析以后,认为消费能力低的原因在于mongoDB查询。

  所以我对代码做了一些修改,在收到kafka的推送以后,将消息加入队列,这样的话kafka服务端会认为此消息已经被消费,然后我再开启一个线程从队列连拿数据进行异步处理。

代码如下:

import com.alibaba.fastjson.JSONObject;
import com.jmev.driveData.service.SynDriveDataService;
import com.jmev.web.util.SpringUtils;
import com.jmev.web.view.DriveHistory;

import java.util.Date;
import java.util.concurrent.ConcurrentLinkedQueue;

/**
 * Created by FM-Qws on 2018/7/12.
 */
public class HistoryHolder {

    private static final ConcurrentLinkedQueue queue = new ConcurrentLinkedQueue<>();

    private static class HolderClass{
        //静态内部类用到的时候再加载
        private final static   HistoryHolder instance = new HistoryHolder();
    }
    public  static HistoryHolder getInstance() {
        return HolderClass.instance;
    }


    private HistoryHolder() {
        //开启线程(我注入的spring bean)
        SynDriveDataService synDriveDataService = SpringUtils.getBean("synDriveDataService");
        new Thread(new HistoryThread(synDriveDataService)).start();
    }

    public  void addSchedule(String vin, Date time, Integer carId, JSONObject carInfoObj) {
        DriveHistory driveHistory = new DriveHistory(vin,time,carId,carInfoObj);
        queue.offer(driveHistory);
    }

    ConcurrentLinkedQueue getQueue(){
        return  queue;
    }

}


import com.jmev.common.redis.RedisTool;
import com.jmev.driveData.service.SynDriveDataService;
import com.jmev.web.util.SpringUtils;
import com.jmev.web.view.DriveHistory;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * Created by FM-Qws on 2018/7/12.
 */
public class HistoryThread  implements  Runnable {

    protected  final Logger logger = LoggerFactory.getLogger(this.getClass());

    private  SynDriveDataService  synDriveDataService;
   HistoryThread(SynDriveDataService synDriveDataService){
        this.synDriveDataService=synDriveDataService;
   }

    @Override
    public void run() {
        RedisTool redisTool = SpringUtils.getBean("redisTool");
        while (true) {
            DriveHistory  driveHistory = HistoryHolder.getInstance().getPoll().poll();
            if (null !=driveHistory ) {
                long l = System.currentTimeMillis();
                try {
                    synDriveDataService.updateByEnd(driveHistory.getVin(), driveHistory.getTime(), driveHistory.getCarId(), driveHistory.getCarInfoObj());
                    logger.info("结束保存历史轨迹的时间为: "+(System.currentTimeMillis() - l)+"ms");
                }catch (Exception  e){
                    redisTool.set("DriveData"+driveHistory.getVin(),"1.0");
                    logger.error("熄火数据修改失败,vin:" + driveHistory.getVin() + "失败原因: " + e.getMessage());
                }
            }

        }
    }
}

DriveHistory是一个实体bean 用于传递kafka的消息具体就不贴了

 然后在kafka消费者里面进行添加队列的操作

HistoryHolder.getInstance().addSchedule(vin,time,carId,carInfoObj);
 这样的话就是异步处理了,每次在kafka推送到后端以后,我只加入队列,然后其他线程异步处理。


你可能感兴趣的:(kafka)