Gurobi之Python调用实例——简单整数规划

一个简单的整数规划问题:

maxs.t.x+y+2zx+2y+3z4x+y1x,y,zbinary(78) (78) m a x x + y + 2 z s . t . x + 2 y + 3 z ≤ 4 x + y ≥ 1 x , y , z b i n a r y

Python代码:

from gurobipy import *

try:

    # Create a new model
    m = Model("mip1")

    # Create variables
    x = m.addVar(vtype=GRB.BINARY, name="x")
    y = m.addVar(vtype=GRB.BINARY, name="y")
    z = m.addVar(vtype=GRB.BINARY, name="z")

    # Set objective
    m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

    # Add constraint: x + 2 y + 3 z <= 4
    m.addConstr(x + 2 * y + 3 * z <= 4, "c0")

    # Add constraint: x + y >= 1
    m.addConstr(x + y >= 1, "c1")

    m.optimize()

    for v in m.getVars():
        print('%s %g' % (v.varName, v.x))

    print('Obj: %g' % m.objVal)

except GurobiError as e:
    print('Error code ' + str(e.errno) + ": " + str(e))

except AttributeError:
    print('Encountered an attribute error')

输出结果:

Optimize a model with 2 rows, 3 columns and 5 nonzeros
Variable types: 0 continuous, 3 integer (3 binary)
Coefficient statistics:
  Matrix range     [1e+00, 3e+00]
  Objective range  [1e+00, 2e+00]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 4e+00]
Found heuristic solution: objective 2.0000000
Presolve removed 2 rows and 3 columns
Presolve time: 0.02s
Presolve: All rows and columns removed

Explored 0 nodes (0 simplex iterations) in 0.02 seconds
Thread count was 1 (of 4 available processors)

Solution count 2: 3 2 

Optimal solution found (tolerance 1.00e-04)
Best objective 3.000000000000e+00, best bound 3.000000000000e+00, gap 0.0000%
x 1
y 0
z 1
Obj: 3

你可能感兴趣的:(Gurobi之Python调用实例——简单整数规划)