用来存一些不知道放到哪里的代码= =
死在括号树上
/*
Author:loceaner
*/
#include
#include
#include
#include
#include
using namespace std;
const int A = 5e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
char s[A];
long long ans, f[A], sum[A];
struct node { int to, nxt; } e[A];
int n, cnt, top, fa[A], sta[A], head[A];
inline void add(int from, int to) {
e[++cnt].to = to;
e[cnt].nxt = head[from];
head[from] = cnt;
}
void dfs(int x) {
int tmp = 0;
if (s[x] == ')') {
if (top) tmp = sta[top--], f[x] = f[fa[tmp]] + 1;
}
else sta[++top] = x;
sum[x] = sum[fa[x]] + f[x];
for (int i = head[x]; i; i = e[i].nxt) dfs(e[i].to);
if (tmp) sta[++top] = tmp;
else if (top) top--;
}
int main() {
n = read();
scanf("%s", s + 1);
for (int i = 2; i <= n; i++) add(fa[i] = read(), i);
dfs(1);
for (int i = 1; i <= n; i++) ans ^= sum[i] * i * 1ll;
cout << ans << '\n';
return 0;
}
文艺平衡树
/*
Author:loceaner
*/
#include
#include
#include
#include
#include
#define fax (t[rt].fa)
using namespace std;
const int A = 5e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int n, m, tot, Rt;
struct node { int siz, son[2], fa, val, cnt; bool tag; } t[B];
int new_node(int fa, int val) {
++tot;
t[tot].siz = t[tot].cnt = 1;
t[tot].fa = fa, t[tot].val = val;
if (val == 0 || val == n + 1) t[tot].val = val ? -inf : inf;
return tot;
}
bool getson(int rt) {
return t[t[rt].fa].son[1] == rt;
}
inline void pushup(int rt) {
if (!rt) return;
t[rt].siz = t[rt].cnt;
if (t[rt].son[0]) t[rt].siz += t[t[rt].son[0]].siz;
if (t[rt].son[1]) t[rt].siz += t[t[rt].son[1]].siz;
}
inline void pushdown(int rt) {
if (!rt || !t[rt].tag) return;
t[t[rt].son[0]].tag ^= 1, t[t[rt].son[1]].tag ^= 1;
swap(t[rt].son[0], t[rt].son[1]);
t[rt].tag = 0;//不要忘掉清空
}
void rotate(int rt) {
int fa = fax, gfa = t[fa].fa, f = getson(rt);
t[fa].son[f] = t[rt].son[f ^ 1];
t[t[rt].son[f ^ 1]].fa = fa;
t[rt].son[f ^ 1] = fa;
t[fa].fa = rt, t[rt].fa = gfa;
if (gfa) t[gfa].son[t[gfa].son[1] == fa] = rt;
pushup(fa), pushup(rt);
}
void splay(int rt, int tar) {
for (int fa = fax; (fa = fax) != tar; rotate(rt))
if (t[fa].fa != tar) rotate(getson(rt) == getson(fa) ? fa : rt);
if (!tar) Rt = rt;
}
int kth(int rt, int siz) {
while (1) {
pushdown(rt);//小心写成pushup
if (siz <= t[t[rt].son[0]].siz) { rt = t[rt].son[0]; continue; }
if (siz == t[t[rt].son[0]].siz + 1) return rt;
siz -= t[t[rt].son[0]].siz + 1, rt = t[rt].son[1];
}
}
inline void reverse(int l, int r) {
l = kth(Rt, l), r = kth(Rt, r);
splay(l, 0), splay(r, l);
t[t[t[Rt].son[1]].son[0]].tag ^= 1;
}
inline int build(int fa, int l, int r) {
if (l > r) return 0;
int mid = (l + r) >> 1, rt = new_node(fa, mid);
t[rt].son[0] = build(rt, l, mid - 1);
t[rt].son[1] = build(rt, mid + 1, r);
pushup(rt);
return rt;
}
void print(int rt) {
if (!rt) return;
pushdown(rt);
print(t[rt].son[0]);
if (t[rt].val >= 1 && t[rt].val <= n) cout << t[rt].val << ' ';
print(t[rt].son[1]);
}
int main() {
// freopen("a.in", "r", stdin);
n = read(), m = read();
Rt = build(0, 0, n + 1);
for (int i = 1, l, r; i <= m; i++) {
l = read(), r = read();
reverse(l, r + 2);
}
print(Rt);
return 0;
}
splay复读
/*
Author:loceaner
splay 复读
*/
int n, tot, root; //tot节点个数、root根节点编号
struct node { int son[2], fa, cnt, siz, val; } t[A];
/*
son[0/1] 左/右儿子
cnt 权值出现次数
val 节点权值
siz 子树大小
*/
//销毁节点rt
inline void nodeclear(int rt) {
ls = rs = fax = t[rt].siz = t[rt].val = t[rt].cnt = 0;
}
//判断now是其父亲的左儿子还是右儿子
//左儿子返回0,右儿子返回1
inline bool getson(int rt) {
return t[fax].son[1] == rt;
}
//维护节点子树大小siz
inline void pushup(int rt) {
if (rt) {
t[rt].siz = t[rt].cnt;
if (ls) t[rt].siz += t[ls].siz;
if (rs) t[rt].siz += t[rs].siz;
}
}
//旋转
//f = 1为右儿子,需要左旋
//f = 0为左儿子,需要右旋
inline void rotate(int rt) {
int fa = fax, gfa = t[fa].fa, f = getson(rt);
t[fa].son[f] = t[rt].son[f ^ 1];
t[t[rt].son[f ^ 1]].fa = fa;
t[rt].son[f ^ 1] = fa;
t[fa].fa = rt, t[rt].fa = gfa;
if (gfa) t[gfa].son[t[gfa].son[1] == fa] = rt;
pushup(fa), pushup(rt);
}
inline void rotate1(int rt) {
int fa = fax, gfa = t[fa].fa, f = getson(rt);
t[fa].son[f] = t[rt].son[f ^ 1];
t[t[rt].son[f ^ 1]].fa = fa;
t[rt].son[f ^ 1] = fa, t[fa].fa = rt, t[rt].fa = gfa;
if (gfa) t[gfa].son[t[gfa].son[1] == fa] = rt;
pushup(fa), pushup(rt);
}
inline void rotate2(int rt) {
int fa = fax, gfa = t[fa].fa, f = getson(rt);
t[fa].son[f] = t[rt].son[f ^ 1];
t[t[rt].son[f ^ 1]].fa = fa;
t[rt].son[f ^ 1] = fa, t[fa].fa = rt, t[rt].fa = gfa;
if (gfa) t[gfa].son[t[gfa].son[1] == fa] = rt;
pushup(fa), pushup(rt);
}
inline void rotate3(int rt) {
int fa = fax, gfa = t[fa].fa, f = getson(rt);
t[fa].son[f] = t[rt].son[f ^ 1];
t[t[rt].son[f ^ 1]].fa = fa;
t[rt].son[f ^ 1] = fa, t[fa].fa = rt, t[rt].fa = gfa;
if (gfa) t[gfa].son[t[gfa].son[1] == fa] = rt;
pushup(fa), pushup(rt);
}
inline void rotate4(int rt) {
int fa = fax, gfa = t[fa].fa, f = getson(rt);
t[fa].son[f] = t[rt].son[f ^ 1];
t[t[rt].son[f ^ 1]].fa = fa;
t[rt].son[f] = fa, t[fa].fa = rt, t[rt].fa = gfa;
if (gfa) t[gfa].son[t[gfa].son[1] == fa] = rt;
pushup(fa), pushup(rt);
}
//splay将now旋转至根的位置
/*
若三点同线则先转父亲再转儿子
若三点不同线则转两次儿子
*/
inline void splay(int rt) {
for (int fa = fax; (fa = fax) != 0; rotate(rt))
if (t[fa].fa) rotate(getson(rt) == getson(fa) ? fa : rt);
root = rt;
}
inline void splay1(int rt) {
for (int fa = fax; (fa = fax) != 0; rotate(rt))
if (t[fa].fa) rotate(getson(rt) == getson(fa) ? fa : rt);
root = rt;
}
inline void splay2(int rt) {
for (int fa = fax; (fa = fax) != 0; rotate(rt))
if (t[fa].fa) rotate(getson(rt) == getson(fa) ? fa : rt);
root = rt;
}
inline void splay3(int rt) {
for (int fa = fax; (fa = fax) != 0; rotate(rt))
if (t[fa].fa) rotate(getson(rt) == getson(fa) ? fa : rt);
root = rt;
}
inline void splay4(int rt) {
for (int fa = fax; (fa = fax) != 0; rotate(rt))
if (t[fa].fa) rotate(getson(rt) == getson(fa) ? fa : rt);
root = rt;
}
//插入
/*
不是指针的好即把难写啊
设插入的值为val
若树空,则直接插入根并退出。
按照二叉查找树的性质向下找:
若当前节点的权值等于 val 则增加当前节点的大小,并更新信息。
否则一直向下,找到空节点并插入。
*/
inline void insert(int val) {
if (!root) {
root = ++tot;
t[root].son[0] = t[root].son[1] = t[root].fa = 0;
t[root].siz = t[root].cnt = 1;
t[root].val = val;
return;
}
int rt = root, fa = 0;
while (1) {
if (val == t[rt].val) {
t[rt].cnt++, pushup(rt), pushup(fa), splay(rt);
break;
}
fa = rt, rt = t[rt].son[val > t[rt].val];
if (!rt) {
rt = ++tot;
t[rt].son[1] = t[rt].son[0] = 0;
t[rt].fa = fa, t[rt].val = val;
t[rt].siz = t[rt].cnt = 1;
t[fa].son[t[fa].val < val] = rt;
pushup(rt), pushup(fa), splay(rt);
break;
}
}
}
inline void insert1(int val) {
if (!root) {
root = ++tot;
t[root].son[0] = t[root].son[1] = t[root].fa = 0;
t[root].siz = t[root].cnt = 1;
t[root].val = val; return;
}
int rt = root, fa = 0;
while (1) {
if (val == t[rt].val) {
t[rt].cnt++, pushup(rt), pushup(fa), splay(rt);
break;
}
fa = rt, rt = t[rt].son[val > t[fa].val];
if (!rt) {
rt = ++tot;
t[rt].son[0] = t[rt].son[1] = 0;
t[rt].fa = fa, t[rt].val = val;
t[rt].siz = t[rt].cnt = 1;
t[fa].son[val > t[fa].val] = rt;
pushup(rt), pushup(fa), splay(rt);
break;
}
}
}
inline void insert2(int val) {
if (!root) {
root = ++tot;
t[root].son[0] = t[root].son[1] = t[root].fa = 0;
t[root].cnt = t[root].siz = 1;
t[root].val = val; return;
}
int rt = root, fa = 0;
while (1) {
if (val == t[rt].val) {
t[rt].cnt++, pushup(rt), pushup(fa), splay(rt);
break;
}
fa = rt, rt = t[rt].son[rt > t[fa].val];
if (!rt) {
rt = ++tot;
t[rt].son[0] = t[rt].son[1] = 0;
t[rt].siz = t[rt].cnt = 1;
t[rt].fa = fa, t[rt].val = val;
t[fa].son[val > t[fa].val] = rt;
pushup(rt), pushup(fa), splay(rt);
break;
}
}
}
inline void insert3(int val) {
if (!root) {
root = ++tot;
t[root].son[0] = t[root].son[1] = t[root].fa = 0;
t[root].siz = t[root].cnt = 1;
t[root].val = val; return;
}
int rt = root, fa = 0;
while (1) {
if (val == t[rt].val) {
t[rt].cnt++, pushup(rt), pushup(fa), splay(rt);
break;
}
fa = rt, rt = t[rt].son[val > t[rt].val];
if (!rt) {
rt = ++tot;
t[rt].son[0] = t[rt].son[1] = 0;
t[rt].siz = t[rt].cnt = 1;
t[rt].val = val, t[rt].fa = fa;
t[fa].son[val > t[fa].val] = rt;
pushup(rt), pushup(fa), splay(rt);
break;
}
}
}
inline void insert4(int val) {
if (!root) {
root = ++tot;
t[root].son[0] = t[root].son[1] = t[root].fa = 0;
t[root].siz = t[root].cnt = 1;
t[root].val = val; return;
}
int rt = root, fa = 0;
while (1) {
if (val == t[rt].val) {
t[rt].cnt++, pushup(rt), pushup(fa), splay(rt);
break;
}
fa = rt, rt = t[rt].son[val > t[rt].val];
if (!rt) {
rt = ++tot;
t[rt].son[0] = t[rt].son[1] = 0;
t[rt].siz = t[rt].cnt = 1;
t[rt].val = val, t[rt].fa = fa;
t[fa].son[val > t[fa].val] = rt;
pushup(rt), pushup(fa), splay(rt);
break;
}
}
}
int rank(int val) {
int rt = root, res = 0;
while (1) {
if (!rt) return -1;
if (val < t[rt].val) rt = ls;
else {
res += (ls ? t[ls].siz : 0);
if (val == t[rt].val) { splay(rt); return res + 1; }
res += t[rt].cnt, rt = rs;
}
}
}
int rank1(int val) {
int rt = root, res = 0;
while (1) {
if (!rt) return -1;
if (val < t[rt].val) rt = ls;
else {
res += (ls ? t[ls].siz : 0);
if (val == t[rt].val) { splay(rt); return res + 1; }
res += t[rt].cnt, rt = rs;
}
}
}
int rank2(int val) {
int rt = root, res = 0;
while (1) {
if (!rt) return -1;
if (val < t[rt].val) rt = ls;
else {
res += (ls ? t[ls].siz : 0);
if (val == t[rt].val) { splay(rt); return res + 1; }
res += t[rt].cnt, rt = rs;
}
}
}
int rank3(int val) {
int rt = root, res = 0;
while (1) {
if (!rt) return -1;
if (val < t[rt].val) rt = ls;
else {
res += (ls ? t[ls].siz : 0);
if (val == t[rt].val) { splay(rt); return res + 1; }
res += t[rt].cnt, rt = rs;
}
}
}
int kth(int rank) {
int rt = root;
while (1) {
if (!rt) return -1;
if (ls && rank <= t[ls].siz) rt = ls;
else {
int tmp = (ls ? t[ls].siz : 0) + t[rt].cnt;
if (rank <= tmp) return t[rt].val;
rank -= tmp, rt = rs;
}
}
}
int kth1(int rank) {
int rt = root;
while (1) {
if (!rt) return -1;
if (ls && rank <= t[ls].siz) rt = ls;
else {
int tmp = (ls ? t[ls].siz : 0) + t[rt].cnt;
if (rank <= tmp) return t[rt].val;
rank -= tmp, rt = rs;
}
}
}
int kth2(int rank) {
int rt = root;
while (1) {
if (!rt) return -1;
if (ls && rank <= t[ls].siz) rt = ls;
else {
int tmp = (ls ? t[ls].siz : 0) + t[rt].siz;
if (rank <= tmp) return t[rt].val;
rank -= tmp, rt = rs;
}
}
}
int kth3(int rank) {
int rt = root;
while (1) {
if (!rt) return -1;
if (ls && rank <= t[ls].siz) rt = ls;
else {
int tmp = (ls ? t[ls].siz : 0) + t[rt].cnt;
if (rank <= tmp) return t[rt].val;
rank -= tmp, rt = rs;
}
}
}
int pre() {
int rt = t[root].son[0];
while (rs) rt = rs;
return rt;
}
int pre1() {
int rt = t[root].son[0];
while (rs) rt = rs;
return rt;
}
int pre2() {
int rt = t[root].son[0];
while (rs) rt = rs;
return rt;
}
int pre3() {
int rt = t[root].son[0];
while (rs) rt = rs;
return rt;
}
int pre4() {
int rt = t[root].son[0];
while (rs) rt = rs;
return rt;
}
int suc() {
int rt = t[root].son[1];
while (ls) rt = ls;
return rt;
}
int suc1() {
int rt = t[root].son[1];
while (ls) rt = ls;
return rt;
}
int suc2() {
int rt = t[root].son[1];
while (ls) rt = ls;
return rt;
}
int suc3() {
int rt = t[root].son[1];
while (ls) rt = ls;
}
int suc4() {
int rt = t[root].son[1];
while (ls) rt = ls;
return rt;
}
void delte(int val) {
int ret = rank(val);
if (ret == -1) return;
if (t[root].cnt > 1) { t[root].cnt--, pushup(root); return; }
if (!t[root].son[0] && !t[root].son[1]) {
nodeclear(root); root = 0; return;
}
if (!t[root].son[0]) {
int old = root;
root = t[root].son[1], t[root].fa = 0;
nodeclear(old); return;
}
if (!t[root].son[1]) {
int old = root;
root = t[root].son[0], t[root].fa = 0;
nodeclear(old); return;
}
int leftmax = pre(), old = root;
splay(leftmax);
t[root].son[1] = t[old].son[1], t[t[old].son[1]].fa = root;
nodeclear(old), pushup(root);
}
int main() {
n = read();
for (int i = 1, opt, x; i <= n; i++) {
opt = read(), x = read();
if (opt == 1) insert(x);
else if (opt == 2) delte(x);
else if (opt == 3) cout << rank(x) << '\n';
else if (opt == 4) cout << kth(x) << '\n';
else if (opt == 5) insert(x), cout << t[pre()].val << '\n', delte(x);
else if (opt == 6) insert(x), cout << t[suc()].val << '\n', delte(x);
}
return 0;
}