opencv必须大于等于3.4.2
opencv在线文档:
https://docs.opencv.org/trunk/db/d30/classcv_1_1dnn_1_1Net.html#a98ed94cb6ef7063d3697259566da310b
参考文章:
https://blog.51cto.com/gloomyfish/2095418
https://blog.csdn.net/windfly_al/article/details/84873767
https://blog.csdn.net/shanglianlm/article/details/80030569
blobFromImage函数
// Opencv_ObjectDetection.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cv;
using namespace dnn;
vector classes;
vector getOutputsNames(Net&net)
{
static vector names;
if (names.empty())
{
//返回加载模型中所有层的输入和输出形状(shape)
vector outLayers = net.getUnconnectedOutLayers();
//get the names of all the layers in the network
vector layersNames = net.getLayerNames();
// Get the names of the output layers in names
names.resize(outLayers.size());
for (size_t i = 0; i < outLayers.size(); ++i)
names[i] = layersNames[outLayers[i] - 1];
}
return names;
}
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(255, 178, 50), 3);
//Get the label for the class name and its confidence
string label = format("%.5f", conf);
if (!classes.empty())
{
CV_Assert(classId < (int)classes.size());
label = classes[classId] + ":" + label;
}
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
rectangle(frame, Point(left, top - round(1.5*labelSize.height)), Point(left + round(1.5*labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 0), 1);
}
void postprocess(Mat& frame, const vector& outs, float confThreshold, float nmsThreshold)
{
vector classIds;
vector confidences;
vector boxes;
for (size_t i = 0; i < outs.size(); ++i)
{
// Scan through all the bounding boxes output from the network and keep only the
// ones with high confidence scores. Assign the box's class label as the class
// with the highest score for the box.
float* data = (float*)outs[i].data;
for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
{
Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
Point classIdPoint;
double confidence;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
if (confidence > confThreshold)
{
int centerX = (int)(data[0] * frame.cols);
int centerY = (int)(data[1] * frame.rows);
int width = (int)(data[2] * frame.cols);
int height = (int)(data[3] * frame.rows);
int left = centerX - width / 2;
int top = centerY - height / 2;
classIds.push_back(classIdPoint.x);
confidences.push_back((float)confidence);
boxes.push_back(Rect(left, top, width, height));
}
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector indices;
NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
for (size_t i = 0; i < indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
drawPred(classIds[idx], confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, frame);
}
}
int main()
{
//加载网络模
String modelConfiguration = "E:/_darknet/x64/data/METAL/darknet19_448.cfg";
String modelBinary = "E:/_darknet/x64/backup/_darknet19_448_final.weights";
dnn::Net net = readNetFromDarknet(modelConfiguration, modelBinary);
if (net.empty())
{
printf("Could not load net...\n");
return 0;
}
/*要求网络在支持的地方使用特定的计算后端
*如果opencv是用intel的推理引擎库编译的,那么dnn_backend_default意味着dnn_backend_interrusion_引擎
*否则等于dnn_backend_opencv。
*/
net.setPreferableBackend(DNN_BACKEND_OPENCV);
//要求网络对特定目标设备进行计算
net.setPreferableTarget(DNN_TARGET_CPU);
//2.加载分类信息
//vector classNamesVec;
ifstream classNamesFile("E:/_darknet/x64/data/METAL/labels.txt");
if (classNamesFile.is_open())
{
string className = "";
while (std::getline(classNamesFile, className))
classes.push_back(className);
}
//3.加载图像
Mat frame = imread("E:/_darknet/x64/data/METAL/abnor/190324141318_00002/s001_abnor.jpg");
// Mat inputBlob = blobFromImage(frame, 1 / 255.F, Size(500, 860), Scalar(), true, false);
std::vector frames;
frames.push_back(frame);
Mat inputBlob = blobFromImages(frames, 1 / 255.F, Size(500, 860), Scalar(), true, false);
net.setInput(inputBlob, "data");
//4.检测和显示
//获得“dectection_out"的输出
vector outs;
net.forward(outs, getOutputsNames(net));
//如果是目标检测任务绘制矩形框
double thresh = 0.5;
double nms_thresh = 0.25;
//postprocess(frame, outs, thresh, nms_thresh);
//reshape the blob to 1x1000 matrix // 1000个分类
Mat probMat = outs[0].reshape(1, 1);
Point classNumber;
double classProb;
// 可能性最大的一个
minMaxLoc(probMat, NULL, &classProb, NULL, &classNumber);
// 分类索引号
int classIdx = classNumber.x;
printf("current image classification : %s, possible : %.8f \n", classes.at(classIdx).c_str(), classProb);
//putText(frame, classes.at(classIdx), Point(20, 20), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 255), 2, 8);
vector layersTimings;
double freq = getTickFrequency() / 1000;
double time = net.getPerfProfile(layersTimings) / freq;
/*ostringstream ss;
ss << "detection time: " << time << " ms";
putText(frame, ss.str(), Point(20, 60), 0, 0.5, Scalar(0, 0, 255));*/
string label = format("class: ")+classes.at(classIdx)+ format(" ,time: %.2f ms",time);
putText(frame, label, Point(20,20), 0, 0.5, Scalar(0, 0, 255));
namedWindow("OCT");
imshow("OCT", frame);
waitKey();
return 0;
}