- 推荐算法_隐语义-梯度下降
_feivirus_
算法机器学习和数学推荐算法机器学习隐语义
importnumpyasnp1.模型实现"""inputrate_matrix:M行N列的评分矩阵,值为P*Q.P:初始化用户特征矩阵M*K.Q:初始化物品特征矩阵K*N.latent_feature_cnt:隐特征的向量个数max_iteration:最大迭代次数alpha:步长lamda:正则化系数output分解之后的P和Q"""defLFM_grad_desc(rate_matrix,l
- 深度 Qlearning:在直播推荐系统中的应用
AGI通用人工智能之禅
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
深度Q-learning:在直播推荐系统中的应用关键词:深度Q-learning,强化学习,直播推荐系统,个性化推荐1.背景介绍1.1问题的由来随着互联网技术的飞速发展,直播平台如雨后春笋般涌现。面对海量的直播内容,用户很难快速找到自己感兴趣的内容。因此,个性化推荐系统在直播平台中扮演着越来越重要的角色。1.2研究现状目前,主流的个性化推荐算法包括协同过滤、基于内容的推荐等。这些方法在一定程度上缓
- Spark MLlib模型训练—推荐算法 ALS(Alternative Least Squares)
不二人生
SparkML实战spark-ml推荐算法算法
SparkMLlib模型训练—推荐算法ALS(AlternativeLeastSquares)如果你平时爱刷抖音,或者热衷看电影,不知道有没有过这样的体验:这类影视App你用得越久,它就好像会读心术一样,总能给你推荐对胃口的内容。其实这种迎合用户喜好的推荐,离不开机器学习中的推荐算法。在今天这一讲,我们就结合两个有趣的电影推荐场景,为你讲解SparkMLlib支持的协同过滤与频繁项集算法电影推荐场
- 网易号怎么发文章赚取收益?新手网易号发文章赚取收益的方法
好项目高省
网易号作为比较有影响力的自媒体平台,在很多渠道上都会有曝光的机会,是自媒体从业者比较好的选择。在网易号上面可以发布自己的原创文章,然后通过平台的推荐算法,送到各个渠道上面展示,感兴趣的用户就会点击查看文章了,那么网易号发文章有收益吗?大家好,我是高省APP联合创始人蓓蓓导师,高省APP是2021年推出的电商导购平台,0投资,0风险、高省APP佣金更高,模式更好,终端用户不流失。【高省】是一个可省钱
- DL参考资源(二)
antkillerfarm
深度学习
DL参考资源推荐系统https://zhuanlan.zhihu.com/p/26237106深度学习在推荐算法上的应用进展http://i.dataguru.cn/mportal.php?mod=view&aid=11463深度学习在推荐领域的应用https://mp.weixin.qq.com/s/hGvQvddD3i858XSK4z08Ug主要推荐系统算法总结及Youtube深度学习推荐算法
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- 推荐算法学习记录2.2——kaggle数据集的动漫电影数据集推荐算法实践——基于内容的推荐算法、协同过滤推荐
萱仔学习自我记录
推荐算法学习pythonmatplotlib开发语言
1、基于内容的推荐:这种方法根据项的相关信息(如描述信息、标签等)和用户对项的操作行为(如评论、收藏、点赞等)来构建推荐算法模型。它可以直接利用物品的内容特征进行推荐,适用于内容较为丰富的场景。#1.基于内容的推荐算法fromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.metrics.pairwiseimport
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- 【好书推荐5】《精通推荐算法:核心模块+经典模型+代码详解》
是Yu欸
粉丝福利学习推荐算法算法机器学习人工智能数据挖掘自然语言处理
【好书推荐5】《精通推荐算法:核心模块+经典模型+代码详解》写在最前面编辑推荐内容简介作者简介精彩书评目录前言/序言本书特色本书内容你好呀!我是是Yu欸2024每日百字篆刻时光,感谢你的陪伴与支持~欢迎一起踏上探险之旅,挖掘无限可能,共同成长!前些天发现了一个人工智能学习网站,内容深入浅出、易于理解。如果对人工智能感兴趣,不妨点击查看。写在最前面感谢大家的陪伴和支持!2024年,争取每周二开展粉丝
- Springboot+爬虫+推荐算法+前后端分离实现小说推荐系统
计算机程序优异哥
如何针对互联网各大小说阅读网站的小说数据进行实时采集更新,建立自己的小说资源库,针对海量的小说数据开展标签处理特征分析,利用推荐算法完成针对用户的个性化阅读推荐?基于以上问题,本次小说推荐系统,建设过程主要分为小说推荐网站前端系统,小说运维管理后台系统,小说数据实时采集爬虫三个部分。小说推荐网站前端系统主要采用开源前端框架搭建小说推荐网站,提供用户登录注册,小说阅读等功能,小说运维管理后台,提供管
- 基于协同滤波推荐算法的图书管理系统
Sweican
毕业设计mybatisjava开发语言
目录一、项目概述二、技术框架三、功能设计四、数据库设计五、项目截图六、技术文档一、项目概述Hi,大家好,今天分享的项目是《基于协同滤波推荐算法的图书管理系统》,对用户登录注册、图书推荐、图书管理、用户信息进行管理,基于用户的协同滤波算法对用户进行图书推荐、根据图书浏览量对用户进行热门图书推荐等。图书管理一方面实现对图书信息的维护,如新增、查看、编辑图书等。另一方面实现对图书借阅进行管理,如图书借出
- AAAI2021推荐系统论文清单
机器学习与推荐算法
人工智能推荐系统深度学习机器学习数据分析
嘿,记得给“机器学习与推荐算法”添加星标2021年第35届人工智能顶级会议AAAI论文列表已经放出,此次会议共收到9034篇论文提交,其中有效审稿为7911篇,最终录取篇数为1692篇,录取率为21.4%。由于境外疫情形势依然严峻,大会将在2月2日到2月9日在线上进行举办。较之去年接收篇数1590篇来说,今年的录取数量有所提升。通过对今年所接收的全部论文的标题进行分析,发现以下结论:深度学习技术依
- 计算机毕业设计Hadoop+Spark知识图谱体育赛事推荐系统 体育赛事热度预测系统 体育赛事数据分析 体育赛事可视化 体育赛事大数据 机器学习 大数据毕业设计 大数据毕设 机器学习 人工智能
计算机毕业设计大全
开发技术前端:vue.js、element-ui、echarts后端:springboot、mybatis大数据:spark、hadoop数据库:mysql关系型数据库、neo4j图数据库算法:协同过滤推荐算法、MLP深度学习模型、SVD神经网络混合推荐算法、lstm模型、KNN、CNN、Sklearn、K-Means第三方平台:百度AI、阿里云短信、支付宝沙箱支付爬虫:Pythonchrome-
- 我为什么要转行做大模型?钱多、活少、下班早....
大模型玩家
语言模型人工智能pdf自然语言处理agiai程序员
最近研究了一下大模型相关的内容,决定从互联网的推荐算法转行做大模型推理工程化相关的工作。所以简单说说我在这个决定中的思考过程。1.推荐算法岗的现状我本来是一个在大厂做推荐算法的工程师。收入在行业里面算是中游水平,就这么一直干着似乎也没什么问题。但是互联网行业的岗位毕竟和公务员和事业单位比,不存在一个工作干一辈子的情况。这个工作能不能继续干完全取决于市场对于这个岗位有没有需求。但是推荐算法今年的情况
- 计算机毕业设计hadoop+spark知识图谱美食推荐系统 美食价格预测 美团推荐系统 美团爬虫 大众点评爬虫 美食数据分析 美食可视化大屏 大数据毕设
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集大众点评美食数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartsspar
- 计算机毕业设计hadoop+spark知识图谱高考分数预测系统 高考志愿推荐系统 高考可视化大屏 高考大数据 高考数据分析 高考爬虫 大数据毕业设计
计算机毕业设计大全
开发技术hadoopsparkspringbootvue.jsPython爬虫、机器学习、深度学习mybatis-plusneo4j知识图谱图数据库mysql协同过滤算法(基于物品、基于用户模式)MLP模型SVD神经网络CNN、KNN、GNN卷积神经网络预测算法阿里云平台百度AI平台阿里大于短信平台lstm模型创新点4种机器学习推荐算法进行高考志愿学校推荐1种深度学习模型进行高考分数线预测hado
- 在亚马逊云科技上利用生成式AI开发用户广告营销平台
佛州小李哥
AWS技术科技人工智能aws架构亚马逊云科技云计算开发
项目简介:小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWSAI最佳实践,并应用到自己的日常工作里。本次介绍的是如何利用亚马逊云科技大模型托管服务AmazonBedrock和个性化推荐算法服务AmazonPersonalize搭建面向用户的广告营销平台,将生成式AI应用到用户的广告营销场景,提升用户产品转化
- 面了美团搜索推荐算法岗,虽然有点难过但收获不少!
机器学习社区
搜广推算法实战&面试面试推荐算法职场和发展深度学习人工智能机器学习
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。今天整理我们社群粉丝分享的算法岗方向面试题,分享给大家,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以文末加入我们交流群。一面自我介绍先问如果面试通过
- 计算机设计大赛 深度学习大数据物流平台 python
iuerfee
python
文章目录0前言1课题背景2物流大数据平台的架构与设计3智能车货匹配推荐算法的实现**1\.问题陈述****2\.算法模型**3\.模型构建总览**4司机标签体系的搭建及算法****1\.冷启动**2\.LSTM多标签模型算法5货运价格预测6总结7部分核心代码8最后0前言优质竞赛项目系列,今天要分享的是深度学习大数据物流平台该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评
- Python+Django+Mysql个性化旅游景区推荐系统 在线旅游景点推荐系统 基于机器学习/深度学习/人工智能 基于标签/协同过滤推荐算法 爬虫 可视化数据分析
linge511873822
python基于项目的协同过滤推荐算法基于用户的协同过滤推荐算法python人工智能django机器学习深度学习推荐算法
Python+Django+Mysql个性化旅游景区推荐系统在线旅游景点推荐系统基于机器学习/深度学习/人工智能基于标签/协同过滤推荐算法爬虫可视化数据分析WebTravelRecommendSysPy一、项目简介1、开发工具和使用技术Python3及以上版本,Django3.6及以上版本,mysql8,navicat数据库管理工具或者sqlyog数据库管理工具,bootstrap前端框架,htm
- 【深入理解Attention】Transformer的理解和代码实现
量子-Alex
CV知识学习和论文阅读transformer深度学习人工智能
1Self-attention自注意力机制1.1QKV的理解attention和推荐算法有类似之处我们在电商购物平台上输入查询query,然后平台返回商品列表系统会根据query去查找所有相似度高的商品,商品自带的标签就是key,query与key相乘就得到相似度然后根据客户的评价给所有商品打分,得到value,评价高的value就高。用户喜不喜欢、评价高不高、销量高不高就是value最后,把相似
- hadoot离线与实时的电影推荐系统-计算机毕业设计源码10338
FYKJ_2010
mysqlajaxcssbootstrapvue.js
摘要随着互联网与移动互联网迅速普及,网络上的电影娱乐信息数量相当庞大,人们对获取感兴趣的电影娱乐信息的需求越来越大,个性化的离线与实时的电影推荐系统成为一个热门。然而电影信息的表示相当复杂,己有的相似度计算方法与推荐算法都各有优势,导致单一的相似度计算方法与推荐算法无法合适地应用于离线与实时的电影推荐系统中。大量的电影数据的管理运营随着数据量的增长也变得越来越复杂,因此,如何综合各种算法的优势给用
- 复盘网飞成功经验
小强聊成长
网飞的创业历程是我们这个时代具有戏剧性和洞察力的创业故事。它与脸书、亚马逊、谷歌并称为美股四剑客。首创了电影推荐算法与会员制,缔造了《纸牌屋》等多部热门影视剧。网飞的创业从无到有,到后来的巨大成功,大多数创业公司经历的事情他们都经历过了,只不过因为每个关键的选择他们都选对了。01.好点子的诞生创业之初,他们有过很多想法,包括定制棒球棒,个性化冲浪板,宠物定制口粮等等。最初的想法很简单,就是要创业,
- numpy 矩阵乘法_一起学习Python常用模块——numpy
weixin_39636099
numpy矩阵乘法numpy矩阵乘法python对ndarray全体除以一个数python稀疏矩阵乘法python空数组python安装numpy模块
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- python 对ndarray全体除以一个数_一起学习Python常用模块——numpy
weixin_39785814
python对ndarray全体除以一个数python空数组python数组全部平方
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- 【开源】JAVA+Vue.js实现海南旅游景点推荐系统
蜜桃小阿雯
开源javavue.js开发语言springboot前端
目录一、摘要1.1项目介绍1.2项目录屏二、功能模块2.1用户端2.2管理员端三、系统展示四、核心代码4.1随机景点推荐4.2景点评价4.3协同推荐算法4.4网站登录4.5查询景点美食五、免责说明一、摘要1.1项目介绍基于Vue+SpringBoot+MySQL的海南旅游推荐系统,基于协同推荐算法,包括用户网页和管理后台,包含景点类型模块、旅游景点模块、行程推荐模块、美食推荐模块、景点排名模块,还
- 不知不觉,已经6天没看抖音了
anfer的成长思考
生活需要是需要仪式感的。最近工作不多,让我有充足的时间反思自己这几年的变化,思考以后的路该如何去走。随身年龄增长,身上的焦虑感越来越重,这个焦虑感来自于媒体刻意渲染的影响(贬低大众认知),头条推荐算法的影响(推送有焦虑感的新闻和文章),还有职场潜规则的影响(很多80后被裁,35岁以后不好找工作),当然,更重要的是家庭压力,房贷、4位老人的未来。但是,我知道焦虑感只是一种情绪而已,而情绪我们可以通过
- 如何再抖音做视频剪辑赚钱?普通人做抖音视频剪辑赚钱的方法
高省APP大九
首先了解西瓜视频和抖音的推荐机制。西瓜视频是粉丝+算法推荐,就是你的视频会先推荐给你的粉丝,你的粉丝喜欢的粉丝会推荐给你的粉丝。如果你的粉丝不多,发布视频可以获得几十到几百个冷启动显示。但想要获得更高的呈现,需要高质量的内容,运气就更重要了。而抖音完全基于推荐算法分发,平台根据用户喜好匹配内容。其实是两种完全不同的推荐机制。挑一个适合自己的类型。1.培训类:其实能用来培训的一般都是内容简单或者门槛
- 传统推荐算法库使用--mahout初体验
Huterox
推荐算法算法机器学习
文章目录前言环境准备调用混合总结前言郑重声明:本博文做法仅限毕设糊弄老师使用,不建议生产环境使用!!!老项目缝缝补补又是三年,本来是打算直接重写写个社区然后给毕设使用的。但是怎么说呢,毕竟毕设的主角不是xx社区,这个社区是为我的编译器服务的,为了推广这个编译器,然后我才做了这个社区。然而不幸的是,开题答辩的时候,各位“专家”叫我以xx社区为主,听起来高级。于是没有办法,我只能强行做个社区,怎么做呢
- 使用Java+Springboot+Mysql开发个性化新能源汽车推荐系统 在线新能源电动车辆推荐平台 汽车购物商城 基于机器学习、深度学习、人工智能推荐 基于协同过滤推荐算法 爬虫 可视化数据分析
linge511873822
网站模板基于项目的协同过滤推荐算法基于用户的协同过滤推荐算法java人工智能springboot机器学习协同过滤深度学习
使用Java+Springboot+Mysql开发个性化新能源汽车推荐系统在线新能源电动车辆推荐平台汽车购物商城基于机器学习、深度学习、人工智能推荐基于协同过滤推荐算法爬虫可视化数据分析CarRecommendWebEx一、项目简介1、开发工具和使用技术IDEA/Eclipse,jdk1.8,mysql5.5/mysql8,navicat数据库管理工具,springboot开发框架,spring+
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo