Android之rild进程启动源码分析

Android 电话系统框架介绍

android系统中rild运行在AP上,AP上的应用通过rild发送AT指令给BPBP接收到信息后又通过rild传送给AP。AP与BP之间有两种通信方式:

1.SolicitedResponse:ApBp发送请求,BpAp发送回复,该类型的AT指令及其回调函数以数组的形式存放在Ril_commands.h文件中:

{数组中的索引号,请求回调函数,响应回调函数}

    {0, NULL, NULL},                   //none
    {RIL_REQUEST_GET_SIM_STATUS, dispatchVoid, responseSimStatus},
    {RIL_REQUEST_ENTER_SIM_PIN, dispatchStrings, responseInts},
    {RIL_REQUEST_ENTER_SIM_PUK, dispatchStrings, responseInts},
    {RIL_REQUEST_ENTER_SIM_PIN2, dispatchStrings, responseInts},
    {RIL_REQUEST_ENTER_SIM_PUK2, dispatchStrings, responseInts},
    {RIL_REQUEST_CHANGE_SIM_PIN, dispatchStrings, responseInts},
    {RIL_REQUEST_CHANGE_SIM_PIN2, dispatchStrings, responseInts},
    {RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION, dispatchStrings, responseInts},
    {RIL_REQUEST_GET_CURRENT_CALLS, dispatchVoid, responseCallList},
    {RIL_REQUEST_DIAL, dispatchDial, responseVoid},
    {RIL_REQUEST_GET_IMSI, dispatchStrings, responseString},
    {RIL_REQUEST_HANGUP, dispatchInts, responseVoid},
    {RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND, dispatchVoid, responseVoid},
    {RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND, dispatchVoid, responseVoid},
    {RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE, dispatchVoid, responseVoid},
    {RIL_REQUEST_CONFERENCE, dispatchVoid, responseVoid},
    {RIL_REQUEST_UDUB, dispatchVoid, responseVoid},
    {RIL_REQUEST_LAST_CALL_FAIL_CAUSE, dispatchVoid, responseInts},
    {RIL_REQUEST_SIGNAL_STRENGTH, dispatchVoid, responseRilSignalStrength},
    {RIL_REQUEST_VOICE_REGISTRATION_STATE, dispatchVoid, responseStrings},
    {RIL_REQUEST_DATA_REGISTRATION_STATE, dispatchVoid, responseStrings},
    {RIL_REQUEST_OPERATOR, dispatchVoid, responseStrings},
    {RIL_REQUEST_RADIO_POWER, dispatchInts, responseVoid},
    {RIL_REQUEST_DTMF, dispatchString, responseVoid},
    {RIL_REQUEST_SEND_SMS, dispatchStrings, responseSMS},
    {RIL_REQUEST_SEND_SMS_EXPECT_MORE, dispatchStrings, responseSMS},
    {RIL_REQUEST_SETUP_DATA_CALL, dispatchDataCall, responseSetupDataCall},
    {RIL_REQUEST_SIM_IO, dispatchSIM_IO, responseSIM_IO},
    {RIL_REQUEST_SEND_USSD, dispatchString, responseVoid},
    {RIL_REQUEST_CANCEL_USSD, dispatchVoid, responseVoid},
    {RIL_REQUEST_GET_CLIR, dispatchVoid, responseInts},
    {RIL_REQUEST_SET_CLIR, dispatchInts, responseVoid},
    {RIL_REQUEST_QUERY_CALL_FORWARD_STATUS, dispatchCallForward, responseCallForwards},
    {RIL_REQUEST_SET_CALL_FORWARD, dispatchCallForward, responseVoid},
    {RIL_REQUEST_QUERY_CALL_WAITING, dispatchInts, responseInts},
    {RIL_REQUEST_SET_CALL_WAITING, dispatchInts, responseVoid},
    {RIL_REQUEST_SMS_ACKNOWLEDGE, dispatchInts, responseVoid},
    {RIL_REQUEST_GET_IMEI, dispatchVoid, responseString},
    {RIL_REQUEST_GET_IMEISV, dispatchVoid, responseString},
    {RIL_REQUEST_ANSWER,dispatchVoid, responseVoid},
    {RIL_REQUEST_DEACTIVATE_DATA_CALL, dispatchStrings, responseVoid},
    {RIL_REQUEST_QUERY_FACILITY_LOCK, dispatchStrings, responseInts},
    {RIL_REQUEST_SET_FACILITY_LOCK, dispatchStrings, responseInts},
    {RIL_REQUEST_CHANGE_BARRING_PASSWORD, dispatchStrings, responseVoid},
    {RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE, dispatchVoid, responseInts},
    {RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, dispatchVoid, responseVoid},
    {RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL, dispatchString, responseVoid},
    {RIL_REQUEST_QUERY_AVAILABLE_NETWORKS , dispatchVoid, responseStrings},
    {RIL_REQUEST_DTMF_START, dispatchString, responseVoid},
    {RIL_REQUEST_DTMF_STOP, dispatchVoid, responseVoid},
    {RIL_REQUEST_BASEBAND_VERSION, dispatchVoid, responseString},
    {RIL_REQUEST_SEPARATE_CONNECTION, dispatchInts, responseVoid},
    {RIL_REQUEST_SET_MUTE, dispatchInts, responseVoid},
    {RIL_REQUEST_GET_MUTE, dispatchVoid, responseInts},
    {RIL_REQUEST_QUERY_CLIP, dispatchVoid, responseInts},
    {RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE, dispatchVoid, responseInts},
    {RIL_REQUEST_DATA_CALL_LIST, dispatchVoid, responseDataCallList},
    {RIL_REQUEST_RESET_RADIO, dispatchVoid, responseVoid},
    {RIL_REQUEST_OEM_HOOK_RAW, dispatchRaw, responseRaw},
    {RIL_REQUEST_OEM_HOOK_STRINGS, dispatchStrings, responseStrings},
    {RIL_REQUEST_SCREEN_STATE, dispatchInts, responseVoid},
    {RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION, dispatchInts, responseVoid},
    {RIL_REQUEST_WRITE_SMS_TO_SIM, dispatchSmsWrite, responseInts},
    {RIL_REQUEST_DELETE_SMS_ON_SIM, dispatchInts, responseVoid},
    {RIL_REQUEST_SET_BAND_MODE, dispatchInts, responseVoid},
    {RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE, dispatchVoid, responseInts},
    {RIL_REQUEST_STK_GET_PROFILE, dispatchVoid, responseString},
    {RIL_REQUEST_STK_SET_PROFILE, dispatchString, responseVoid},
    {RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND, dispatchString, responseString},
    {RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE, dispatchString, responseVoid},
    {RIL_REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM, dispatchInts, responseVoid},
    {RIL_REQUEST_EXPLICIT_CALL_TRANSFER, dispatchVoid, responseVoid},
    {RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE, dispatchInts, responseVoid},
    {RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE, dispatchVoid, responseInts},
    {RIL_REQUEST_GET_NEIGHBORING_CELL_IDS, dispatchVoid, responseCellList},
    {RIL_REQUEST_SET_LOCATION_UPDATES, dispatchInts, responseVoid},
    {RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE, dispatchInts, responseVoid},
    {RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE, dispatchInts, responseVoid},
    {RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE, dispatchVoid, responseInts},
    {RIL_REQUEST_SET_TTY_MODE, dispatchInts, responseVoid},
    {RIL_REQUEST_QUERY_TTY_MODE, dispatchVoid, responseInts},
    {RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE, dispatchInts, responseVoid},
    {RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE, dispatchVoid, responseInts},
    {RIL_REQUEST_CDMA_FLASH, dispatchString, responseVoid},
    {RIL_REQUEST_CDMA_BURST_DTMF, dispatchStrings, responseVoid},
    {RIL_REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY, dispatchString, responseVoid},
    {RIL_REQUEST_CDMA_SEND_SMS, dispatchCdmaSms, responseSMS},
    {RIL_REQUEST_CDMA_SMS_ACKNOWLEDGE, dispatchCdmaSmsAck, responseVoid},
    {RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG, dispatchVoid, responseGsmBrSmsCnf},
    {RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG, dispatchGsmBrSmsCnf, responseVoid},
    {RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION, dispatchInts, responseVoid},
    {RIL_REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG, dispatchVoid, responseCdmaBrSmsCnf},
    {RIL_REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG, dispatchCdmaBrSmsCnf, responseVoid},
    {RIL_REQUEST_CDMA_SMS_BROADCAST_ACTIVATION, dispatchInts, responseVoid},
    {RIL_REQUEST_CDMA_SUBSCRIPTION, dispatchVoid, responseStrings},
    {RIL_REQUEST_CDMA_WRITE_SMS_TO_RUIM, dispatchRilCdmaSmsWriteArgs, responseInts},
    {RIL_REQUEST_CDMA_DELETE_SMS_ON_RUIM, dispatchInts, responseVoid},
    {RIL_REQUEST_DEVICE_IDENTITY, dispatchVoid, responseStrings},
    {RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE, dispatchVoid, responseVoid},
    {RIL_REQUEST_GET_SMSC_ADDRESS, dispatchVoid, responseString},
    {RIL_REQUEST_SET_SMSC_ADDRESS, dispatchString, responseVoid},
    {RIL_REQUEST_REPORT_SMS_MEMORY_STATUS, dispatchInts, responseVoid},
    {RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING, dispatchVoid, responseVoid},
    {RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE, dispatchCdmaSubscriptionSource, responseInts},
    {RIL_REQUEST_ISIM_AUTHENTICATION, dispatchString, responseString},
    {RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU, dispatchStrings, responseVoid},
    {RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS, dispatchString, responseSIM_IO},
    {RIL_REQUEST_VOICE_RADIO_TECH, dispatchVoiceRadioTech, responseInts},


2.unSolicitedResponse:Bp主动给Ap发送事件,该类型的AT指令及其回调函数以数组的形式存放在ril_unsol_commands.h文件中:

{数组中的索引号,响应回调函数,类型}

    {RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_RESPONSE_NEW_SMS, responseString, WAKE_PARTIAL},
    {RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT, responseString, WAKE_PARTIAL},
    {RIL_UNSOL_RESPONSE_NEW_SMS_ON_SIM, responseInts, WAKE_PARTIAL},
    {RIL_UNSOL_ON_USSD, responseStrings, WAKE_PARTIAL},
    {RIL_UNSOL_ON_USSD_REQUEST, responseVoid, DONT_WAKE},
    {RIL_UNSOL_NITZ_TIME_RECEIVED, responseString, WAKE_PARTIAL},
    {RIL_UNSOL_SIGNAL_STRENGTH, responseRilSignalStrength, DONT_WAKE},
    {RIL_UNSOL_DATA_CALL_LIST_CHANGED, responseDataCallList, WAKE_PARTIAL},
    {RIL_UNSOL_SUPP_SVC_NOTIFICATION, responseSsn, WAKE_PARTIAL},
    {RIL_UNSOL_STK_SESSION_END, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_STK_PROACTIVE_COMMAND, responseString, WAKE_PARTIAL},
    {RIL_UNSOL_STK_EVENT_NOTIFY, responseString, WAKE_PARTIAL},
    {RIL_UNSOL_STK_CALL_SETUP, responseInts, WAKE_PARTIAL},
    {RIL_UNSOL_SIM_SMS_STORAGE_FULL, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_SIM_REFRESH, responseSimRefresh, WAKE_PARTIAL},
    {RIL_UNSOL_CALL_RING, responseCallRing, WAKE_PARTIAL},
    {RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_RESPONSE_CDMA_NEW_SMS, responseCdmaSms, WAKE_PARTIAL},
    {RIL_UNSOL_RESPONSE_NEW_BROADCAST_SMS, responseRaw, WAKE_PARTIAL},
    {RIL_UNSOL_CDMA_RUIM_SMS_STORAGE_FULL, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_RESTRICTED_STATE_CHANGED, responseInts, WAKE_PARTIAL},
    {RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_CDMA_CALL_WAITING, responseCdmaCallWaiting, WAKE_PARTIAL},
    {RIL_UNSOL_CDMA_OTA_PROVISION_STATUS, responseInts, WAKE_PARTIAL},
    {RIL_UNSOL_CDMA_INFO_REC, responseCdmaInformationRecords, WAKE_PARTIAL},
    {RIL_UNSOL_OEM_HOOK_RAW, responseRaw, WAKE_PARTIAL},
    {RIL_UNSOL_RINGBACK_TONE, responseInts, WAKE_PARTIAL},
    {RIL_UNSOL_RESEND_INCALL_MUTE, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED, responseInts, WAKE_PARTIAL},
    {RIL_UNSOL_CDMA_PRL_CHANGED, responseInts, WAKE_PARTIAL},
    {RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE, responseVoid, WAKE_PARTIAL},
    {RIL_UNSOL_RIL_CONNECTED, responseInts, WAKE_PARTIAL},
    {RIL_UNSOL_VOICE_RADIO_TECH_CHANGED, responseInts, WAKE_PARTIAL},

不同手机厂商使用的AT命令不完全相同,为了保密,APBP之间通过各厂商自己的相关动态库来通信。

RIL模块由rild守护进程、libril.solibrefrence.so三部分组成:

1.rild模块被编译为一个可执行文件,实现一个main函数作为整个ril模块的入口点。在初始化时使用dlopen打开librefrence_ril.so,从中取出并执行RIL_Init函数,得到RIL_RadioFunctions指针,通过RIL_register()函数注册到libril.so库中,其源码结构如下:

2.libril.so是共享库,主要负责同上层的通信工作,接收ril的请求,并传递给librefrence_ril.so,同时将librefrence_ril.so返回的消息送给调用进程,源码结构如下所示:

3.librefrence_ril.so是由各手机厂商自己实现,在rild进程运行中通过dlopen方式加载,主要负责跟modem硬件通信,转换来自libril.so的请求为AT命令,同时监听Modem的反馈信息给libril.so


Android的电话系统主要分为三个部分,java层的各种电话相关应用,java层的Phone Service,主要为上层提供API,同时与native进行通信,可以看做为电话系统的客户端,native层的电话服务进程RILD,负责为上层提供各种电话功能服务,直接与modem进行交互:


Android电话系统设计框架图:


由于Android开发者使用的Modem是不一样的,各种指令格式,初始化序列都可能不一样,所以为了消除这些差别,Android设计者将ril做了一个抽象,使用一个虚拟电话的概念,不同modem相关的AT指令或者通信协议编译成相应的动态链接库.so文件,Rild是具体的AT指令合成者和应答解析者。


Android电话系统代码结构图:



RILD框架设计

在android的电话系统中,在native层实现了电话服务的服务端,由RILD服务与modem的交互,在java层实现电话的客户端,本文主要介绍电话系统的服务端RILD进程,以下是RILD的设计框架图:



RILD源码分析

接下来通过源码对RILD的整个框架进行详细介绍。

在kernel启动完成后,将启动第一个应用进程Init进程,在android之Init进程启动过程源码分析一文中对init进程的启动流程进行了详细的介绍。init进程在启动过程中将读取init.rc文件来启动一些重量级的native服务,rild进程就是通过配置在init.rc中来启动的。

service ril-daemon /system/bin/rild
    class main
    socket rild stream 660 root radio
    socket rild-debug stream 660 radio system
    user root
    group radio cache inet misc audio sdcard_rw log

RILD进程入口函数分析

接下来给出的是RILD进程启动的时序图:

hardware\ril\rild\rild.c

int main(int argc, char **argv)
{
    const char * rilLibPath = NULL;
    char **rilArgv;
    void *dlHandle;
    const RIL_RadioFunctions *(*rilInit)(const struct RIL_Env *, int, char **);
    const RIL_RadioFunctions *funcs;
    char libPath[PROPERTY_VALUE_MAX];
    unsigned char hasLibArgs = 0;
    int i;
  umask(S_IRGRP | S_IWGRP | S_IXGRP | S_IROTH | S_IWOTH | S_IXOTH);
  //rild启动无参数
    for (i = 1; i < argc ;) {
        if (0 == strcmp(argv[i], "-l") && (argc - i > 1)) {
            rilLibPath = argv[i + 1];
            i += 2;
        } else if (0 == strcmp(argv[i], "--")) {
            i++;
            hasLibArgs = 1;
            break;
        } else {
            usage(argv[0]);
        }
    }
  if (rilLibPath == NULL) {
      //通过Android属性系统读取属性"rild.libpath"的值,即lib库的存放路径
        if ( 0 == property_get(LIB_PATH_PROPERTY, libPath, NULL)) {
            goto done;
        } else {
            rilLibPath = libPath;
        }
  }
##################################################################################
                            判断是否为模拟器
##################################################################################
#if 1
    {
        static char*  arg_overrides[3];
        static char   arg_device[32];
        int           done = 0;
#define  REFERENCE_RIL_PATH  "/system/lib/libreference-ril.so"
        /* first, read /proc/cmdline into memory */
        char          buffer[1024], *p, *q;
        int           len;
        int           fd = open("/proc/cmdline",O_RDONLY);
        if (fd < 0) {
            LOGD("could not open /proc/cmdline:%s", strerror(errno));
            goto OpenLib;
        }
        //读取/proc/cmdline文件中的内容
        do {
            len = read(fd,buffer,sizeof(buffer)); }
        while (len == -1 && errno == EINTR);
        if (len < 0) {
            LOGD("could not read /proc/cmdline:%s", strerror(errno));
            close(fd);
            goto OpenLib;
        }
        close(fd);
        //判断是否为模拟器,对于真机,此处条件为false
        if (strstr(buffer, "android.qemud=") != NULL)
        {
            int  tries = 5;
#define  QEMUD_SOCKET_NAME    "qemud"
            while (1) {
                int  fd;
                sleep(1);
                fd = socket_local_client(QEMUD_SOCKET_NAME,
                            ANDROID_SOCKET_NAMESPACE_RESERVED,
                            SOCK_STREAM );
                if (fd >= 0) {
                    close(fd);
                    snprintf( arg_device, sizeof(arg_device), "%s/%s",
                                ANDROID_SOCKET_DIR, QEMUD_SOCKET_NAME );
                    arg_overrides[1] = "-s";
                    arg_overrides[2] = arg_device;
                    done = 1;
                    break;
                }
                LOGD("could not connect to %s socket: %s",QEMUD_SOCKET_NAME, strerror(errno));
                if (--tries == 0)
                    break;
            }
            if (!done) {
                LOGE("could not connect to %s socket (giving up): %s",
                    QEMUD_SOCKET_NAME, strerror(errno));
                while(1)
                    sleep(0x00ffffff);
            }
        }

        /* otherwise, try to see if we passed a device name from the kernel */
        if (!done) do { //true
#define  KERNEL_OPTION  "android.ril="
#define  DEV_PREFIX     "/dev/"
            //判断/proc/cmdline中的内容是否包含"android.ril="
            p = strstr( buffer, KERNEL_OPTION );
            if (p == NULL)
                break;
            p += sizeof(KERNEL_OPTION)-1;
            q  = strpbrk( p, " \t\n\r" );
            if (q != NULL)
                *q = 0;
            snprintf( arg_device, sizeof(arg_device), DEV_PREFIX "%s", p );
            arg_device[sizeof(arg_device)-1] = 0;
            arg_overrides[1] = "-d";
            arg_overrides[2] = arg_device;
            done = 1;
        } while (0);
        
        if (done) { //false
            argv = arg_overrides;
            argc = 3;
            i    = 1;
            hasLibArgs = 1;
            rilLibPath = REFERENCE_RIL_PATH;
            LOGD("overriding with %s %s", arg_overrides[1], arg_overrides[2]);
        }
    }
OpenLib:
#endif
##################################################################################
                            动态库装载
##################################################################################

  switchUser();//设置Rild进程的组用户为radio
  //加载厂商自定义的库
    ①dlHandle = dlopen(rilLibPath, RTLD_NOW);
    if (dlHandle == NULL) {
        fprintf(stderr, "dlopen failed: %s\n", dlerror());
        exit(-1);
  }
  //创建客户端事件监听线程
  ②RIL_startEventLoop();
  //通过dlsym定位到RIL_Init函数的地址,并且强制转换为RIL_RadioFunctions的函数指针
    ③rilInit = (const RIL_RadioFunctions *(*)(const struct RIL_Env *, int, char **))dlsym(dlHandle, "RIL_Init");
    if (rilInit == NULL) {
        fprintf(stderr, "RIL_Init not defined or exported in %s\n", rilLibPath);
        exit(-1);
    }
    if (hasLibArgs) { //false
        rilArgv = argv + i - 1;
        argc = argc -i + 1;
    } else {
        static char * newArgv[MAX_LIB_ARGS];
        static char args[PROPERTY_VALUE_MAX];
        rilArgv = newArgv;
        property_get(LIB_ARGS_PROPERTY, args, "");//通过属性系统读取"rild.libargs"属性值
        argc = make_argv(args, rilArgv);
    }
    // Make sure there's a reasonable argv[0]
  rilArgv[0] = argv[0];
  //调用RIL_Init函数来初始化rild,传入参数s_rilEnv,返回RIL_RadioFunctions地址
  ④funcs = rilInit(&s_rilEnv, argc, rilArgv);
  //注册客户端事件处理接口RIL_RadioFunctions,并创建socket监听事件
    ⑤RIL_register(funcs);
done:
    while(1) {
        // sleep(UINT32_MAX) seems to return immediately on bionic
        sleep(0x00ffffff);
    }
}

在main函数中主要完成以下工作:

1.解析命令行参数,通过判断是否为模拟器采取不同的方式来读取libreference-ril.so库的存放路径;

2.使用dlopen手动装载libreference-ril.so库;

3.启动事件循环处理;

4.从libreference-ril.so库中取得RIL_Init函数地址,并使用该函数将libril.so库中的RIL_Env接口注册到libreference-ril.so库,同时将libreference-ril.so库中的RIL_RadioFunctions接口注册到到libril.so库中,建立起libril.so库与libreference-ril.so库通信桥梁;

启动事件循环处理eventLoop工作线程

建立多路I/O驱动机制的消息队列,用来接收上层发出的命令以及往Modem发送AT指令的工作,时整个RIL系统的核心部分。创建一个事件分发线程s_tid_dispatch,线程执行体为eventLoop。

hardware\ril\libril\Ril.cpp

extern "C" void RIL_startEventLoop(void) {
    int ret;
    pthread_attr_t attr;
    /* spin up eventLoop thread and wait for it to get started */
    s_started = 0;
    pthread_mutex_lock(&s_startupMutex);
    pthread_attr_init (&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  //创建一个工作线程eventLoop
  ret = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);
  //确保函数返回前eventLoop线程启动运行
    while (s_started == 0) {
        pthread_cond_wait(&s_startupCond, &s_startupMutex);
    }
    pthread_mutex_unlock(&s_startupMutex);
    if (ret < 0) {
        LOGE("Failed to create dispatch thread errno:%d", errno);
        return;
    }
}
eventLoop执行时序图:


static void * eventLoop(void *param) {
    int ret;
    int filedes[2];
    ril_event_init(); //初始化请求队列
    pthread_mutex_lock(&s_startupMutex);
    s_started = 1; //eventLoop线程运行标志位
    pthread_cond_broadcast(&s_startupCond);
  pthread_mutex_unlock(&s_startupMutex);
  //创建匿名管道
    ret = pipe(filedes);
    if (ret < 0) {
        LOGE("Error in pipe() errno:%d", errno);
        return NULL;
  }
  //s_fdWakeupRead为管道读端
  s_fdWakeupRead = filedes[0];
  //s_fdWakeupWrite为管道写端
  s_fdWakeupWrite = filedes[1];
  //设置管道读端为O_NONBLOCK非阻塞
  fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK);
  //初始化s_wakeupfd_event结构体的内容,句柄为s_fdWakeupRead,回调函数为   processWakeupCallback
    ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL);
    ①rilEventAddWakeup (&s_wakeupfd_event);
    // Only returns on error
    ②ril_event_loop();
    LOGE ("error in event_loop_base errno:%d", errno);
    return NULL;
}
在rild中定义了event的概念,Rild 支持两种类型的事件:

1.定时事件:根据事件的执行时间来启动执行,通过ril_timer_add添加到time_list队列中

2.Wakeup事件:这些事件的句柄fd将加入的selectIO多路复用的句柄池readFDs中,当对应的fd可读时将触发这些事件。对于处于listen端的socketfd可读表示有个客户端连接,此时需要调用accept接受连接。

事件定义如下:
struct ril_event {
    struct ril_event *next;
    struct ril_event *prev;
    int fd;  //文件句柄
    int index; //该事件在监控表中的索引 
    bool persist; //如果是保持的,则不从watch_list 中删除
    struct timeval timeout; //任务执行时间
    ril_event_cb func; //回调事件处理函数
    void *param; //回调时参数
};

Rild进程中的几个重要事件有

static struct ril_event s_commands_event;
ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs)

static struct ril_event s_wakeupfd_event;
ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL)

static struct ril_event s_listen_event;
ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL)

static struct ril_event s_wake_timeout_event;
ril_timer_add(&(p_info->event), &myRelativeTime);
static struct ril_event s_debug_event;
ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL)

在RILD中定义了三个事件队列,用于处理不同的事件:

/事件监控队列

staticstructril_event*watch_table[MAX_FD_EVENTS];

//定时事件队列

staticstructril_eventtimer_list;

//处理事件队列

staticstructril_eventpending_list;//待处理事件队列,事件已经触发,需要所回调处理的事件


添加事件

1.添加 Wakeup 事件
static void rilEventAddWakeup(struct ril_event *ev) {
    ril_event_add(ev); //向监控表watch_table添加一个s_wakeupfd_event事件
    triggerEvLoop(); //向管道s_fdWakeupWrite中写入之来触发事件循环
}

void ril_event_add(struct ril_event * ev)
{
    dlog("~~~~ +ril_event_add ~~~~");
    MUTEX_ACQUIRE();
    for (int i = 0; i < MAX_FD_EVENTS; i++) { //遍历监控表watch_table
        if (watch_table[i] == NULL) { //从监控表中查找空闲的索引,然后把该任务加入到监控表中
            watch_table[i] = ev; //向监控表中添加事件
            ev->index = i; //事件的索引设置为在监控表中的索引
            dlog("~~~~ added at %d ~~~~", i);
            dump_event(ev);
            FD_SET(ev->fd, &readFds); //将添加的事件对应的句柄添加到句柄池readFds中
            if (ev->fd >= nfds) nfds = ev->fd+1; //修改句柄最大值
            dlog("~~~~ nfds = %d ~~~~", nfds);
            break;
        }
    }
    MUTEX_RELEASE();
    dlog("~~~~ -ril_event_add ~~~~");
}

2.添加定时事件
void ril_timer_add(struct ril_event * ev, struct timeval * tv)
{
    dlog("~~~~ +ril_timer_add ~~~~");
    MUTEX_ACQUIRE();
    struct ril_event * list;
    if (tv != NULL) {
        list = timer_list.next;
        ev->fd = -1; // make sure fd is invalid
        struct timeval now;
        getNow(&now);
        timeradd(&now, tv, &ev->timeout);
        // keep list sorted
        while (timercmp(&list->timeout, &ev->timeout, < ) && (list != &timer_list)) {
            list = list->next;
        }
        // list now points to the first event older than ev
        addToList(ev, list);
    }
    MUTEX_RELEASE();
    dlog("~~~~ -ril_timer_add ~~~~");
}

触发事件

static void triggerEvLoop() {
    int ret;
  if (!pthread_equal(pthread_self(), s_tid_dispatch)) { //如果当前线程ID不等于事件分发线程eventLoop的线程ID
      do {
            ret = write (s_fdWakeupWrite, " ", 1); //向管道写端写入值1来触发eventLoop事件循环
         } while (ret < 0 && errno == EINTR);
    }
}

处理事件

void ril_event_loop()
{
    int n;
    fd_set rfds;
    struct timeval tv;
    struct timeval * ptv;
    for (;;) {
        memcpy(&rfds, &readFds, sizeof(fd_set));
        if (-1 == calcNextTimeout(&tv)) {
            dlog("~~~~ no timers; blocking indefinitely ~~~~");
            ptv = NULL;
        } else {
            dlog("~~~~ blocking for %ds + %dus ~~~~", (int)tv.tv_sec, (int)tv.tv_usec);
            ptv = &tv;
        }
        //使用select 函数等待在FDS 上,只要FDS 中记录的设备有数据到来,select 就会设置相应的标志位并返回。readFDS 记录了所有的事件相关设备句柄。readFDS 中句柄是在在AddEvent 加入的。
        printReadies(&rfds);
        n = select(nfds, &rfds, NULL, NULL, ptv); 
        printReadies(&rfds);
        dlog("~~~~ %d events fired ~~~~", n);
        if (n < 0) {
            if (errno == EINTR) continue;
            LOGE("ril_event: select error (%d)", errno);
            return;
        }
        processTimeouts(); //从timer_list中查询执行时间已到的事件,并添加到pending_list中
        processReadReadies(&rfds, n); //从watch_table中查询数据可读的事件,并添加到pending_list中去处理,如果该事件不是持久事件,则同时从watch_table中删除
        //遍历pending_list,调用事件处理回调函数处理所有事件
        firePending();
    }
}


在eventLoop工作线程中,循环处理到来的事件及定时结束事件,整个处理流程如下图所示:

首先通过Linux中的select多路I/O复用对句柄池中的所有句柄进行监控,当有事件到来时select返回,否则阻塞。当select返回时,表示有事件的到来,通过调用processTimeouts函数来处理超时事件,处理方式是遍历time_list链表以查询超时事件,并将超时事件移入到pending_list链表中,接着调用processReadReadies函数来处理触发的事件,处理方式为遍历watch_table列表以查询触发的事件,并将触发的事件移入到pending_list链表中,如果该事件不是持久事件,还需要从watch_table列表中移除,当查询完两种待处理的事件并放入到pending_list链表中后,调用firePending函数对待处理的事件进行集中处理,处理方式为遍历链表,调用每一个事件的回调函数。

1.超时事件查询
static void processTimeouts()
{
    dlog("~~~~ +processTimeouts ~~~~");
    MUTEX_ACQUIRE();
    struct timeval now;
    struct ril_event * tev = timer_list.next;
    struct ril_event * next;
    getNow(&now); //获取当前时间
  dlog("~~~~ Looking for timers <= %ds + %dus ~~~~", (int)now.tv_sec, (int)now.tv_usec);
  //如果当前时间大于事件的超时时间,则将该事件从timer_list中移除,添加到pending_list
    while ((tev != &timer_list) && (timercmp(&now, &tev->timeout, >))) {
        dlog("~~~~ firing timer ~~~~");
        next = tev->next;
        removeFromList(tev); //从timer_list中移除事件
        addToList(tev, &pending_list); //将事件添加到pending_list
        tev = next;
    }
    MUTEX_RELEASE();
    dlog("~~~~ -processTimeouts ~~~~");
}
2.可读事件查询

static void processReadReadies(fd_set * rfds, int n)
{
    dlog("~~~~ +processReadReadies (%d) ~~~~", n);
  MUTEX_ACQUIRE(); 
  //遍历watch_table数组,根据select返回的句柄n查找对应的事件
    for (int i = 0; (i < MAX_FD_EVENTS) && (n > 0); i++) {
        struct ril_event * rev = watch_table[i]; //得到相应的事件
        if (rev != NULL && FD_ISSET(rev->fd, rfds)) {
            addToList(rev, &pending_list); //将该事件添加到pending_list中
            if (rev->persist == false) { //如果该事件不是持久事件还要从watch_table中移除
                removeWatch(rev, i);
            }
            n--;
        }
    }
    MUTEX_RELEASE();
    dlog("~~~~ -processReadReadies (%d) ~~~~", n);
}

3.事件处理
static void firePending()
{
    dlog("~~~~ +firePending ~~~~");
    struct ril_event * ev = pending_list.next;
    while (ev != &pending_list) { //遍历pending_list链表,处理链表中的所有事件
        struct ril_event * next = ev->next;
        removeFromList(ev); //将处理完的事件从pending_list中移除
        ev->func(ev->fd, 0, ev->param); //调用事件处理的回调函数
        ev = next;
    }
    dlog("~~~~ -firePending ~~~~");
}

RIL_Env定义

hardware\ril\include\telephony\ril.h

struct RIL_Env {
    //动态库完成请求后通知处理结果的接口
  void (*OnRequestComplete)(RIL_Token t, RIL_Errno e,void *response, size_t responselen);
    //动态库unSolicited Response通知接口
  void (*OnUnsolicitedResponse)(int unsolResponse, const void *data,size_t datalen);
    //向Rild提交一个超时任务的接口
    void (*RequestTimedCallback) (RIL_TimedCallback callback,void *param, const struct timeval *relativeTime);
};

hardware\ril\rild\rild.c

s_rilEnv变量定义:

static struct RIL_Env s_rilEnv = {
    RIL_onRequestComplete,
    RIL_onUnsolicitedResponse,
    RIL_requestTimedCallback
};

在hardware\ril\libril\ril.cpp中实现了RIL_Env的各个接口函数

1.RIL_onRequestComplete

extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {
    RequestInfo *pRI;
    int ret;
    size_t errorOffset;
    pRI = (RequestInfo *)t;
    if (!checkAndDequeueRequestInfo(pRI)) {
        LOGE ("RIL_onRequestComplete: invalid RIL_Token");
        return;
    }
    if (pRI->local > 0) {
        // Locally issued command...void only!
        // response does not go back up the command socket
        LOGD("C[locl]< %s", requestToString(pRI->pCI->requestNumber));
        goto done;
    }
    appendPrintBuf("[%04d]< %s",pRI->token, requestToString(pRI->pCI->requestNumber));
    if (pRI->cancelled == 0) {
        Parcel p;
        p.writeInt32 (RESPONSE_SOLICITED);
        p.writeInt32 (pRI->token);
        errorOffset = p.dataPosition();
        p.writeInt32 (e);
        if (response != NULL) {
            // there is a response payload, no matter success or not.
            ret = pRI->pCI->responseFunction(p, response, responselen);
            /* if an error occurred, rewind and mark it */
            if (ret != 0) {
                p.setDataPosition(errorOffset);
                p.writeInt32 (ret);
            }
        }
        if (e != RIL_E_SUCCESS) {
            appendPrintBuf("%s fails by %s", printBuf, failCauseToString(e));
        }
        if (s_fdCommand < 0) {
            LOGD ("RIL onRequestComplete: Command channel closed");
        }
        sendResponse(p);
    }
done:
    free(pRI);
}

通过调用responseXXX将底层响应传给客户进程

2.RIL_onUnsolicitedResponse

extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, void *data,
                                size_t datalen)
{
    int unsolResponseIndex;
    int ret;
    int64_t timeReceived = 0;
    bool shouldScheduleTimeout = false;
    if (s_registerCalled == 0) {
        // Ignore RIL_onUnsolicitedResponse before RIL_register
        LOGW("RIL_onUnsolicitedResponse called before RIL_register");
        return;
    }
    unsolResponseIndex = unsolResponse - RIL_UNSOL_RESPONSE_BASE;
    if ((unsolResponseIndex < 0)
        || (unsolResponseIndex >= (int32_t)NUM_ELEMS(s_unsolResponses))) {
        LOGE("unsupported unsolicited response code %d", unsolResponse);
        return;
    }
    // Grab a wake lock if needed for this reponse,
    // as we exit we'll either release it immediately
    // or set a timer to release it later.
    switch (s_unsolResponses[unsolResponseIndex].wakeType) {
        case WAKE_PARTIAL:
            grabPartialWakeLock();
            shouldScheduleTimeout = true;
        break;
        case DONT_WAKE:
        default:
            // No wake lock is grabed so don't set timeout
            shouldScheduleTimeout = false;
            break;
    }
    // Mark the time this was received, doing this
    // after grabing the wakelock incase getting
    // the elapsedRealTime might cause us to goto
    // sleep.
    if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {
        timeReceived = elapsedRealtime();
    }
    appendPrintBuf("[UNSL]< %s", requestToString(unsolResponse));
    Parcel p;
    p.writeInt32 (RESPONSE_UNSOLICITED);
    p.writeInt32 (unsolResponse);
    ret = s_unsolResponses[unsolResponseIndex].responseFunction(p, data, datalen);
    if (ret != 0) {
        // Problem with the response. Don't continue;
        goto error_exit;
    }
    // some things get more payload
    switch(unsolResponse) {
        case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED:
            p.writeInt32(s_callbacks.onStateRequest());
            appendPrintBuf("%s {%s}", printBuf,
                radioStateToString(s_callbacks.onStateRequest()));
        break;
        case RIL_UNSOL_NITZ_TIME_RECEIVED:
            // Store the time that this was received so the
            // handler of this message can account for
            // the time it takes to arrive and process. In
            // particular the system has been known to sleep
            // before this message can be processed.
            p.writeInt64(timeReceived);
        break;
    }
    ret = sendResponse(p);
    if (ret != 0 && unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {
        // Unfortunately, NITZ time is not poll/update like everything
        // else in the system. So, if the upstream client isn't connected,
        // keep a copy of the last NITZ response (with receive time noted
        // above) around so we can deliver it when it is connected
        if (s_lastNITZTimeData != NULL) {
            free (s_lastNITZTimeData);
            s_lastNITZTimeData = NULL;
        }
        s_lastNITZTimeData = malloc(p.dataSize());
        s_lastNITZTimeDataSize = p.dataSize();
        memcpy(s_lastNITZTimeData, p.data(), p.dataSize());
    }
    // For now, we automatically go back to sleep after TIMEVAL_WAKE_TIMEOUT
    // FIXME The java code should handshake here to release wake lock
    if (shouldScheduleTimeout) {
        // Cancel the previous request
        if (s_last_wake_timeout_info != NULL) {
            s_last_wake_timeout_info->userParam = (void *)1;
        }
        s_last_wake_timeout_info= internalRequestTimedCallback(wakeTimeoutCallback, NULL,
                                            &TIMEVAL_WAKE_TIMEOUT);
    }
    return;
error_exit:
    if (shouldScheduleTimeout) {
        releaseWakeLock();
    }
}

这个函数处理modem从网络端接收到的各种事件,如网络信号变化,拨入的电话,收到短信等。然后传给客户进程。

3.RIL_requestTimedCallback

extern "C" void RIL_requestTimedCallback (RIL_TimedCallback callback, void *param,
                                const struct timeval *relativeTime) {
    internalRequestTimedCallback (callback, param, relativeTime);
}

static UserCallbackInfo *internalRequestTimedCallback (RIL_TimedCallback callback, void *param,
                                const struct timeval *relativeTime)
{
    struct timeval myRelativeTime;
    UserCallbackInfo *p_info;
    p_info = (UserCallbackInfo *) malloc (sizeof(UserCallbackInfo));
    p_info->p_callback = callback;
    p_info->userParam = param;
    if (relativeTime == NULL) {
        /* treat null parameter as a 0 relative time */
        memset (&myRelativeTime, 0, sizeof(myRelativeTime));
    } else {
        /* FIXME I think event_add's tv param is really const anyway */
        memcpy (&myRelativeTime, relativeTime, sizeof(myRelativeTime));
    }
    ril_event_set(&(p_info->event), -1, false, userTimerCallback, p_info);
    ril_timer_add(&(p_info->event), &myRelativeTime);
    triggerEvLoop();
    return p_info;
}

RIL_RadioFunctions定义

客户端向Rild发送请求的接口,由各手机厂商实现。

hardware\ril\include\telephony\Ril.h

typedef struct {
    int version; //Rild版本
    RIL_RequestFunc onRequest; //AP请求接口
    RIL_RadioStateRequest onStateRequest;//BP状态查询
    RIL_Supports supports;
    RIL_Cancel onCancel;
    RIL_GetVersion getVersion;//动态库版本
} RIL_RadioFunctions;
变量定义:
static const RIL_RadioFunctions s_callbacks = {
    RIL_VERSION,
    onRequest,
    currentState,
    onSupports,
    onCancel,
    getVersion
};

在hardware\ril\reference-ril\reference-ril.c中实现了RIL_RadioFunctions的各个接口函数

1.onRequest

static void onRequest (int request, void *data, size_t datalen, RIL_Token t)
{
    ATResponse *p_response;
    int err;
    LOGD("onRequest: %s", requestToString(request));
    /* Ignore all requests except RIL_REQUEST_GET_SIM_STATUS
     * when RADIO_STATE_UNAVAILABLE.
     */
    if (sState == RADIO_STATE_UNAVAILABLE
        && request != RIL_REQUEST_GET_SIM_STATUS
    ) {
        RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
        return;
    }
    /* Ignore all non-power requests when RADIO_STATE_OFF
     * (except RIL_REQUEST_GET_SIM_STATUS)
     */
    if (sState == RADIO_STATE_OFF&& !(request == RIL_REQUEST_RADIO_POWER
            || request == RIL_REQUEST_GET_SIM_STATUS)
    ) {
        RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
        return;
    }
    switch (request) {
        case RIL_REQUEST_GET_SIM_STATUS: {
            RIL_CardStatus *p_card_status;
            char *p_buffer;
            int buffer_size;
            int result = getCardStatus(&p_card_status);
            if (result == RIL_E_SUCCESS) {
                p_buffer = (char *)p_card_status;
                buffer_size = sizeof(*p_card_status);
            } else {
                p_buffer = NULL;
                buffer_size = 0;
            }
            RIL_onRequestComplete(t, result, p_buffer, buffer_size);
            freeCardStatus(p_card_status);
            break;
        }
        case RIL_REQUEST_GET_CURRENT_CALLS:
            requestGetCurrentCalls(data, datalen, t);
            break;
        case RIL_REQUEST_DIAL:
            requestDial(data, datalen, t);
            break;
        case RIL_REQUEST_HANGUP:
            requestHangup(data, datalen, t);
            break;
        case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND:
            // 3GPP 22.030 6.5.5
            // "Releases all held calls or sets User Determined User Busy
            //  (UDUB) for a waiting call."
            at_send_command("AT+CHLD=0", NULL);
            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND:
            // 3GPP 22.030 6.5.5
            // "Releases all active calls (if any exist) and accepts
            //  the other (held or waiting) call."
            at_send_command("AT+CHLD=1", NULL);
            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE:
            // 3GPP 22.030 6.5.5
            // "Places all active calls (if any exist) on hold and accepts
            //  the other (held or waiting) call."
            at_send_command("AT+CHLD=2", NULL);

#ifdef WORKAROUND_ERRONEOUS_ANSWER
            s_expectAnswer = 1;
#endif /* WORKAROUND_ERRONEOUS_ANSWER */
            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_ANSWER:
            at_send_command("ATA", NULL);
#ifdef WORKAROUND_ERRONEOUS_ANSWER
            s_expectAnswer = 1;
#endif /* WORKAROUND_ERRONEOUS_ANSWER */
            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_CONFERENCE:
            // 3GPP 22.030 6.5.5
            // "Adds a held call to the conversation"
            at_send_command("AT+CHLD=3", NULL);
            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_UDUB:
            /* user determined user busy */
            /* sometimes used: ATH */
            at_send_command("ATH", NULL);
            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_SEPARATE_CONNECTION:
            {
                char  cmd[12];
                int   party = ((int*)data)[0];
                // Make sure that party is in a valid range.
                // (Note: The Telephony middle layer imposes a range of 1 to 7.
                // It's sufficient for us to just make sure it's single digit.)
                if (party > 0 && party < 10) {
                    sprintf(cmd, "AT+CHLD=2%d", party);
                    at_send_command(cmd, NULL);
                    RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
                } else {
                    RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
                }
            }
            break;
        case RIL_REQUEST_SIGNAL_STRENGTH:
            requestSignalStrength(data, datalen, t);
            break;
        case RIL_REQUEST_REGISTRATION_STATE:
        case RIL_REQUEST_GPRS_REGISTRATION_STATE:
            requestRegistrationState(request, data, datalen, t);
            break;
        case RIL_REQUEST_OPERATOR:
            requestOperator(data, datalen, t);
            break;
        case RIL_REQUEST_RADIO_POWER:
            requestRadioPower(data, datalen, t);
            break;
        case RIL_REQUEST_DTMF: {
            char c = ((char *)data)[0];
            char *cmd;
            asprintf(&cmd, "AT+VTS=%c", (int)c);
            at_send_command(cmd, NULL);
            free(cmd);
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        }
        case RIL_REQUEST_SEND_SMS:
            requestSendSMS(data, datalen, t);
            break;
        case RIL_REQUEST_SETUP_DATA_CALL:
            requestSetupDataCall(data, datalen, t);
            break;
        case RIL_REQUEST_SMS_ACKNOWLEDGE:
            requestSMSAcknowledge(data, datalen, t);
            break;
        case RIL_REQUEST_GET_IMSI:
            p_response = NULL;
            err = at_send_command_numeric("AT+CIMI", &p_response);
            if (err < 0 || p_response->success == 0) {
                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
            } else {
                RIL_onRequestComplete(t, RIL_E_SUCCESS,
                    p_response->p_intermediates->line, sizeof(char *));
            }
            at_response_free(p_response);
            break;
        case RIL_REQUEST_GET_IMEI:
            p_response = NULL;
            err = at_send_command_numeric("AT+CGSN", &p_response);

            if (err < 0 || p_response->success == 0) {
                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
            } else {
                RIL_onRequestComplete(t, RIL_E_SUCCESS,
                    p_response->p_intermediates->line, sizeof(char *));
            }
            at_response_free(p_response);
            break;
        case RIL_REQUEST_SIM_IO:
            requestSIM_IO(data,datalen,t);
            break;
        case RIL_REQUEST_SEND_USSD:
            requestSendUSSD(data, datalen, t);
            break;
        case RIL_REQUEST_CANCEL_USSD:
            p_response = NULL;
            err = at_send_command_numeric("AT+CUSD=2", &p_response);
            if (err < 0 || p_response->success == 0) {
                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
            } else {
                RIL_onRequestComplete(t, RIL_E_SUCCESS,
                    p_response->p_intermediates->line, sizeof(char *));
            }
            at_response_free(p_response);
            break;
        case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC:
            at_send_command("AT+COPS=0", NULL);
            break;
        case RIL_REQUEST_DATA_CALL_LIST:
            requestDataCallList(data, datalen, t);
            break;
        case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE:
            requestQueryNetworkSelectionMode(data, datalen, t);
            break;
        case RIL_REQUEST_OEM_HOOK_RAW:
            // echo back data
            RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);
            break;
        case RIL_REQUEST_OEM_HOOK_STRINGS: {
            int i;
            const char ** cur;
            LOGD("got OEM_HOOK_STRINGS: 0x%8p %lu", data, (long)datalen);
            for (i = (datalen / sizeof (char *)), cur = (const char **)data ;
                    i > 0 ; cur++, i --) {
                LOGD("> '%s'", *cur);
            }
            // echo back strings
            RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);
            break;
        }
        case RIL_REQUEST_WRITE_SMS_TO_SIM:
            requestWriteSmsToSim(data, datalen, t);
            break;
        case RIL_REQUEST_DELETE_SMS_ON_SIM: {
            char * cmd;
            p_response = NULL;
            asprintf(&cmd, "AT+CMGD=%d", ((int *)data)[0]);
            err = at_send_command(cmd, &p_response);
            free(cmd);
            if (err < 0 || p_response->success == 0) {
                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
            } else {
                RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            }
            at_response_free(p_response);
            break;
        }
        case RIL_REQUEST_ENTER_SIM_PIN:
        case RIL_REQUEST_ENTER_SIM_PUK:
        case RIL_REQUEST_ENTER_SIM_PIN2:
        case RIL_REQUEST_ENTER_SIM_PUK2:
        case RIL_REQUEST_CHANGE_SIM_PIN:
        case RIL_REQUEST_CHANGE_SIM_PIN2:
            requestEnterSimPin(data, datalen, t);
            break;
        case RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION:
            requestSmsBroadcastActivation(0,data, datalen, t);
            break;
        case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:
             LOGD("onRequest RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG");
            requestSetSmsBroadcastConfig(0,data, datalen, t);
            break;
        case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:
            requestGetSmsBroadcastConfig(0,data, datalen, t);
            break;
        default:
            RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);
            break;
    }
}

对每一个RIL_REQUEST_XXX请求转化成相应的ATcommand,发送给modem,然后睡眠等待,当收到ATcommand的最终响应后,线程被唤醒,将响应传给客户端进程。

2.currentState

static RIL_RadioState currentState()
{
    return sState;
}

3.onSupports

static int onSupports (int requestCode)
{
    //@@@ todo
    return 1;
}

4.onCancel

static void onCancel (RIL_Token t)
{
    //@@@todo
}

5.getVersion

static const char * getVersion(void)
{
    return "android reference-ril 1.0";
}

注册RIL_Env接口



由于各手机厂商的AT指令差异,因此与modem交互层需要各手机厂商实现,以动态库的形式提供。作为介于modem与上层的中间层,即要与底层交互也要与上层通信,因此就需要定义一个接口来衔接RILD与动态库,RIL_Env和RIL_RadioFunctions接口就是libril.so与librefrence.so通信的桥梁。Rild架构中用于隔离通用代码和厂商代码的接口,RIL_Env由通用代码实现,而RIL_RadioFunctions则是由厂商代码实现。


RIL_Init的主要任务:

1. 向librefrence.so注册libril.so提供的接口RIL_Env;

2.创建一个mainLoop工作线程,用于初始化AT模块,并监控AT模块的状态,一旦AT被关闭,则重新打开并初始化AT

3.AT被打开后,mainLoop工作线程将向Rild提交一个定时事件,并触发eventLoop来完成对modem的初始化;

4.创建一个readLoop工作线程,用于从AT串口中读取数据;

5.返回librefrence.so提供的接口RIL_RadioFunctions;

hardware\ril\reference-ril\reference-ril.c

const RIL_RadioFunctions *RIL_Init(const struct RIL_Env *env, int argc, char **argv)
{
    int ret;
    int fd = -1;
    int opt;
    pthread_attr_t attr;
  s_rilenv = env; //将ril.cpp中定义的RIL_Env注册到reference-ril.c中的s_rilenv
    while ( -1 != (opt = getopt(argc, argv, "p:d:s:"))) {
        switch (opt) {
            case 'p':
                s_port = atoi(optarg);
                if (s_port == 0) {
                    usage(argv[0]);
                    return NULL;
                }
                LOGI("Opening loopback port %d\n", s_port);
            break;
            case 'd':
                s_device_path = optarg;
                LOGI("Opening tty device %s\n", s_device_path);
            break;
            case 's':
                s_device_path   = optarg;
                s_device_socket = 1;
                LOGI("Opening socket %s\n", s_device_path);
            break;
            default:
                usage(argv[0]);
                return NULL;
        }
    }
    if (s_port < 0 && s_device_path == NULL) {
        usage(argv[0]);
        return NULL;
    }
    pthread_attr_init (&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  //创建一个mainLoop线程
  ret = pthread_create(&s_tid_mainloop, &attr, mainLoop, NULL);
  //将reference-ril.c中定义的RIL_RadioFunctions返回并注册到ril.cpp中的s_callbacks
    return &s_callbacks;
}

mainLoop工作线程是用来初始化并监控AT模块的,一旦AT模块被关闭,就自动打开。

static void * mainLoop(void *param)
{
    int fd;
    int ret;
  AT_DUMP("== ", "entering mainLoop()", -1 );
  //为AT模块设置回调函数
    at_set_on_reader_closed(onATReaderClosed);
    at_set_on_timeout(onATTimeout);
    for (;;) {
        fd = -1;
        while  (fd < 0) { //获得串口AT模块的设备文件描述符
            if (s_port > 0) {
                fd = socket_loopback_client(s_port, SOCK_STREAM);
            } else if (s_device_socket) {
                if (!strcmp(s_device_path, "/dev/socket/qemud")) {
                    /* Qemu-specific control socket */
                    fd = socket_local_client( "qemud",
                 ANDROID_SOCKET_NAMESPACE_RESERVED,SOCK_STREAM );
                    if (fd >= 0 ) {
                        char  answer[2];
                        if ( write(fd, "gsm", 3) != 3 ||read(fd, answer, 2) != 2 ||
                             memcmp(answer, "OK", 2) != 0)
                        {
                            close(fd);
                            fd = -1;
                        }
                   }
                }
                else
                    fd = socket_local_client( s_device_path,    ANDROID_SOCKET_NAMESPACE_FILESYSTEM,SOCK_STREAM );
            } else if (s_device_path != NULL) {
                fd = open (s_device_path, O_RDWR);
                if ( fd >= 0 && !memcmp( s_device_path, "/dev/ttyS", 9 ) ) {
                    /* disable echo on serial ports */
                    struct termios  ios;
                    tcgetattr( fd, &ios );
                    ios.c_lflag = 0;  /* disable ECHO, ICANON, etc... */
                    tcsetattr( fd, TCSANOW, &ios );
                }
            }
            if (fd < 0) {
                perror ("opening AT interface. retrying...");
                sleep(10);
            }
        }
        s_closed = 0;
        //打开AT模块,创建AT读取线程s_tid_reader,fd为modem设备文件句柄
        ret = at_open(fd, onUnsolicited);
        if (ret < 0) {
            LOGE ("AT error %d on at_open\n", ret);
            return 0;
        }
        //向Rild提交超时任务
        RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);
        sleep(1);
        //如果AT模块被关闭,则waitForClose返回,重新打开AT,如果AT已打开,则阻塞
        waitForClose();
        LOGI("Re-opening after close");
    }
}

1.打开AT模块

通过at_open打开文件描述符为fdAT串口设备,并注册回调函数ATUnsolHandler

int at_open(int fd, ATUnsolHandler h)
{
    int ret;
    pthread_t tid;
    pthread_attr_t attr;
    s_fd = fd;
    s_unsolHandler = h;
    s_readerClosed = 0;
    s_responsePrefix = NULL;
    s_smsPDU = NULL;
    sp_response = NULL;
    /* Android power control ioctl */
#ifdef HAVE_ANDROID_OS
#ifdef OMAP_CSMI_POWER_CONTROL
    ret = ioctl(fd, OMAP_CSMI_TTY_ENABLE_ACK);
    if(ret == 0) {
        int ack_count;
		int read_count;
        int old_flags;
        char sync_buf[256];
        old_flags = fcntl(fd, F_GETFL, 0);
        fcntl(fd, F_SETFL, old_flags | O_NONBLOCK);
        do {
            ioctl(fd, OMAP_CSMI_TTY_READ_UNACKED, &ack_count);
			read_count = 0;
            do {
                ret = read(fd, sync_buf, sizeof(sync_buf));
				if(ret > 0)
					read_count += ret;
            } while(ret > 0 || (ret < 0 && errno == EINTR));
            ioctl(fd, OMAP_CSMI_TTY_ACK, &ack_count);
         } while(ack_count > 0 || read_count > 0);
        fcntl(fd, F_SETFL, old_flags);
        s_readCount = 0;
        s_ackPowerIoctl = 1;
    }
    else
        s_ackPowerIoctl = 0;
#else // OMAP_CSMI_POWER_CONTROL
        s_ackPowerIoctl = 0;
#endif // OMAP_CSMI_POWER_CONTROL
#endif /*HAVE_ANDROID_OS*/
    pthread_attr_init (&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  //创建readerLoop工作线程,该线程用于从串口读取数据
    ret = pthread_create(&s_tid_reader, &attr, readerLoop, &attr);
    if (ret < 0) {
        perror ("pthread_create");
        return -1;
    }
    return 0;
}

2.添加定时事件RIL_requestTimedCallback

RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);

#define RIL_requestTimedCallback(a,b,c) s_rilenv->RequestTimedCallback(a,b,c)

向定时事件队列中添加一个定时事件,该事件的处理函数为initializeCallback,用于发送一些AT指令来初始化BPmodem

3.readLoop工作线程

Readloop解析从Modem发过来的回应。如果遇到URC则通过handleUnsolicited上报的RIL_JAVA。如果是命令的应答,则通过handleFinalResponse通知send_at_command有应答结果。


static void *readerLoop(void *arg)
{
    for (;;) {
        const char * line;
        line = readline();
        if (line == NULL) {
            break;
        }
        if(isSMSUnsolicited(line)) { //判断是否是SMS 通知
            char *line1;
            const char *line2;
            line1 = strdup(line);
            line2 = readline();
            if (line2 == NULL) {
                break;
            }
            if (s_unsolHandler != NULL) {
                s_unsolHandler (line1, line2); //回调通知SMS
            }
            free(line1);
        } else {
            processLine(line); //处理接收到的数据,根据line中的指令调用不同的回调函数
        }
#ifdef HAVE_ANDROID_OS
        if (s_ackPowerIoctl > 0) {
            /* acknowledge that bytes have been read and processed */
            ioctl(s_fd, OMAP_CSMI_TTY_ACK, &s_readCount);
            s_readCount = 0;
        }
#endif /*HAVE_ANDROID_OS*/
    }
    onReaderClosed();
    return NULL;
}

注册RIL_RadioFunctions接口

hardware\ril\libril\ril.cpp

extern "C" void RIL_register (const RIL_RadioFunctions *callbacks) {
    int ret;
  int flags;
  //版本验证
    if (callbacks == NULL || ((callbacks->version != RIL_VERSION)&& (callbacks->version < 2))) { 
        return;
    }
    if (callbacks->version < RIL_VERSION) {
        LOGE ("RIL_register: upgrade RIL to version %d current version=%d",
              RIL_VERSION, callbacks->version);
    }
    if (s_registerCalled > 0) {
        LOGE("RIL_register has been called more than once. "Subsequent call ignored");
        return;
  }
    //将reference-ril.c中定义的RIL_RadioFunctions注册到ril.cpp中
    memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));
    s_registerCalled = 1;
    for (int i = 0; i < (int)NUM_ELEMS(s_commands); i++) {
        assert(i == s_commands[i].requestNumber); //序号验证
    }
    for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses); i++) {
        assert(i + RIL_UNSOL_RESPONSE_BASE== s_unsolResponses[i].requestNumber);
    }
    // old standalone impl wants it here.
    if (s_started == 0) {
        RIL_startEventLoop();
    }
  // 得到名为rild的socket句柄
  s_fdListen = android_get_control_socket(SOCKET_NAME_RIL);
    if (s_fdListen < 0) {
        LOGE("Failed to get socket '" SOCKET_NAME_RIL "'");
        exit(-1);
  }
  // 监听该socket
    ret = listen(s_fdListen, 4);
    if (ret < 0) {
        LOGE("Failed to listen on control socket '%d': %s",s_fdListen, strerror(errno));
        exit(-1);
    }
    /* 设置s_listen_event事件,一旦有客户端连接,即s_fdListen可读就会导致eventLoop工作线程中的select返回,因为该事件不是持久的,因此调用为listenCallback处理完后,将从watch_table移除该事件,所以Rild只支持一个客户端连接*/
  ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL);
    /* 添加s_listen_event事件,并触发eventLoop工作线程 */
    rilEventAddWakeup (&s_listen_event);
#if 1
    // 得到调试socket的句柄rild-debug
    s_fdDebug = android_get_control_socket(SOCKET_NAME_RIL_DEBUG);
    if (s_fdDebug < 0) {
        LOGE("Failed to get socket '" SOCKET_NAME_RIL_DEBUG "' errno:%d", errno);
        exit(-1);
  }
  //监听该socket
    ret = listen(s_fdDebug, 4);
    if (ret < 0) {
        LOGE("Failed to listen on ril debug socket '%d': %s",s_fdDebug, strerror(errno));
        exit(-1);
  }
    /* 设置s_debug_event事件 */
    ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL);
    /* 添加s_debug_event事件,并触发eventLoop工作线程  */
    rilEventAddWakeup (&s_debug_event);
#endif
}

打开监听端口,接收来自客户端进程的命令请求,当与客户进程连接建立时调用listenCallback函数,创建单独线程监视并处理所有事件源。

1.客户端连接处理

s_listen_event事件用于处理上层客户端的socket连接,当得到socket连接请求时,eventLoop工作线程里的select返回并自动调用listenCallback回调函数进行处理:

tatic void listenCallback (int fd, short flags, void *param) {
    int ret;
    int err;
    int is_phone_socket;
    RecordStream *p_rs;
    commthread_data_t *user_data = NULL;
    user_data =(commthread_data_t *)malloc(sizeof(commthread_data_t));
    struct sockaddr_un peeraddr;
    socklen_t socklen = sizeof (peeraddr);
    struct ucred creds;
    socklen_t szCreds = sizeof(creds);
    struct passwd *pwd = NULL;
    assert (s_fdCommand < 0);
  assert (fd == s_fdListen);
  //接收一个客户端的连接,并将该socket连接保存在变量s_fdCommand中
    s_fdCommand = accept(s_fdListen, (sockaddr *) &peeraddr, &socklen);
    if (s_fdCommand < 0 ) {
        LOGE("Error on accept() errno:%d", errno);
        /* start listening for new connections again */
        rilEventAddWakeup(&s_listen_event);
	      return;
    }
    /* 对客户端权限判断,判断是否是进程组ID为radio的进程发起的连接*/
    errno = 0;
    is_phone_socket = 0;
    err = getsockopt(s_fdCommand, SOL_SOCKET, SO_PEERCRED, &creds, &szCreds);
    if (err == 0 && szCreds > 0) {
        errno = 0;
        pwd = getpwuid(creds.uid);
        if (pwd != NULL) {
            if (strcmp(pwd->pw_name, PHONE_PROCESS) == 0) {
                is_phone_socket = 1;
            } else {
                LOGE("RILD can't accept socket from process %s", pwd->pw_name);
            }
        } else {
            LOGE("Error on getpwuid() errno: %d", errno);
        }
    } else {
        LOGD("Error on getsockopt() errno: %d", errno);
    }
    
    if ( !is_phone_socket ) {
      LOGE("RILD must accept socket from %s", PHONE_PROCESS);
      close(s_fdCommand);
      s_fdCommand = -1;
      onCommandsSocketClosed();
      /* start listening for new connections again */
      rilEventAddWakeup(&s_listen_event);
      return;
    }
#if 0
    if(s_dualSimMode) {
        if(s_sim_num == 0) {
            property_get(SIM_POWER_PROPERTY, prop, "0");
            if(!strcmp(prop, "0")) {
                property_set(SIM_POWER_PROPERTY, "1");
                s_callbacks.powerSIM(NULL);
            }
        } else if(s_sim_num == 1) {
            property_get(SIM_POWER_PROPERTY1, prop, "0");
            if(!strcmp(prop, "0")) {
                property_set(SIM_POWER_PROPERTY1, "1");
                s_callbacks.powerSIM(NULL);
            }
        }
    } else {
        property_get(SIM_POWER_PROPERTY, prop, "0");
        if(!strcmp(prop, "0")) {
            property_set(SIM_POWER_PROPERTY, "1");
            s_callbacks.powerSIM(NULL);
        }
    }
#endif
    //p_rs为RecordStream类型,它内部会分配一个缓冲区来存储客户端发送过来的数据
  p_rs = record_stream_new(s_fdCommand, MAX_COMMAND_BYTES);
  //添加一个针对接收到的客户端连接的处理事件,从而在eventLoop工作线程中处理该客户端的各种请求
    ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs);
    rilEventAddWakeup (&s_commands_event);
    onNewCommandConnect();
}

2.客户端通信处理

在listenCallback中首先接收客户端的连接请求,并验证客户端的权限,同时将该客户端以事件的形式添加到eventLoop工作线程中进行监控,当该客户端有数据请求时,eventLoop工作线程从select中返回,并自动调用processCommandsCallback回调函数:

static void processCommandsCallback(int fd, short flags, void *param) {
    RecordStream *p_rs;
    void *p_record;
    size_t recordlen;
    int ret;
    assert(fd == s_fdCommand);
    p_rs = (RecordStream *)param;
  for (;;) { //循环处理客户端发送过来的AT命令
      //读取一条AT命令
        ret = record_stream_get_next(p_rs, &p_record, &recordlen);
        if (ret == 0 && p_record == NULL) {
            break;
        } else if (ret < 0) {
            break;
        } else if (ret == 0) { /* && p_record != NULL */
            //处理客户端发送过来的AT命令
            processCommandBuffer(p_record, recordlen);
        }
    }
    if (ret == 0 || !(errno == EAGAIN || errno == EINTR)) {
        if (ret != 0) {
            LOGE("error on reading command socket errno:%d\n", errno);
        } else {
            LOGW("EOS.  Closing command socket.");
        }
        close(s_fdCommand);
        s_fdCommand = -1;
        ril_event_del(&s_commands_event);
        record_stream_free(p_rs);
        rilEventAddWakeup(&s_listen_event);
        onCommandsSocketClosed();
    }
}

通过processCommandBuffer函数来处理每一条AT命令:

static int processCommandBuffer(void *buffer, size_t buflen) {
    Parcel p;
    status_t status;
    int32_t request;
    int32_t token;
    RequestInfo *pRI;
    int ret;
    p.setData((uint8_t *) buffer, buflen);
    // status checked at end
    status = p.readInt32(&request);
    status = p.readInt32 (&token);
    if (status != NO_ERROR) {
        LOGE("invalid request block");
        return 0;
    }
    if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) {
        LOGE("unsupported request code %d token %d", request, token);
        return 0;
    }
    pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));
    pRI->token = token; //AT命令标号
    pRI->pCI = &(s_commands[request]); //根据request找到s_commands命令数组中的指定AT命令
    ret = pthread_mutex_lock(&s_pendingRequestsMutex);
    assert (ret == 0);
    pRI->p_next = s_pendingRequests;
    s_pendingRequests = pRI;
    ret = pthread_mutex_unlock(&s_pendingRequestsMutex);
  assert (ret == 0);
  //调用指定AT命令的dispatch函数,根据接收来自客户进程的命令和参数,调用onRequest进行处理。
    pRI->pCI->dispatchFunction(p, pRI);
    return 0;
}

打电话的AT命令:{RIL_REQUEST_DIAL,dispatchDial,responseVoid},

发短信的AT命令:{RIL_REQUEST_SEND_SMS,dispatchStrings,responseSMS},

3.电话拨打流程



static void dispatchDial (Parcel &p, RequestInfo *pRI) {
  RIL_Dial dial; //RIL_Dial存储了打电话的所有信息
    RIL_UUS_Info uusInfo; 
    int32_t sizeOfDial;
    int32_t t;
    .................. //初始化dial变量  
  s_callbacks.onRequest(pRI->pCI->requestNumber, &dial, sizeOfDial, pRI);
  .................
    return;
}

s_callbacks.onRequest其实就是调用RIL_RadioFunctions中的onRequest函数,该函数在前面已介绍过了。

static void onRequest (int request, void *data, size_t datalen, RIL_Token t)
{
    switch (request) {
        case RIL_REQUEST_DIAL:
            requestDial(data, datalen, t);
            break;
    }
}
static void requestDial(void *data, size_t datalen, RIL_Token t)
{
    RIL_Dial *p_dial;
    char *cmd;
    const char *clir;
    int ret;
    p_dial = (RIL_Dial *)data;
    switch (p_dial->clir) {
        case 1: clir = "I"; break;  /*invocation*/
        case 2: clir = "i"; break;  /*suppression*/
        default:
        case 0: clir = ""; break;   /*subscription default*/
  }
  //向串口发送AT指令
    ret = at_send_command(cmd, NULL);
  free(cmd);
  //通知请求结果
    RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}

AT发送完拨号指令后,通过RIL_onRequestComplete返回处理结果,RIL_onRequestComplete实际上是RIL_Env中的OnRequestComplete函数,在前面我们也介绍过了

extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {
    RequestInfo *pRI;
    int ret;
    size_t errorOffset;
  pRI = (RequestInfo *)t;
  //该请求已经处理,需要从请求队列中移除该请求
    if (!checkAndDequeueRequestInfo(pRI)) {
        LOGE ("RIL_onRequestComplete: invalid RIL_Token");
        return;
    }
    if (pRI->local > 0) {
        ...........
        sendResponse(p);
    }
done:
    free(pRI);
}

static int sendResponse (Parcel &p) {
    return sendResponseRaw(p.data(), p.dataSize()); //将结果发送给JAVA RIL客户端
}

static int sendResponseRaw (const void *data, size_t dataSize) {
    int fd = s_fdCommand;
    int ret;
    uint32_t header;
    if (s_fdCommand < 0) {
        return -1;
    }
    if (dataSize > MAX_COMMAND_BYTES) {
        return -1;
    }
    pthread_mutex_lock(&s_writeMutex);
    header = htonl(dataSize);
    ret = blockingWrite(fd, (void *)&header, sizeof(header));
    if (ret < 0) {
        pthread_mutex_unlock(&s_writeMutex);
        return ret;
    }
    ret = blockingWrite(fd, data, dataSize);
    if (ret < 0) {
        pthread_mutex_unlock(&s_writeMutex);
        return ret;
    }
    pthread_mutex_unlock(&s_writeMutex);
    return 0;
}

拨打电话的时序图如下:


Rild通过onRequest向动态库提交一个请求,然后返回,动态库处理完请求后,处理结果通过回调接口通知客户端


你可能感兴趣的:(Android之rild进程启动源码分析)