图像处理之二值膨胀及应用

图像处理之二值膨胀及应用

基本原理:

膨胀是图像形态学的两个基本操作之一,另外一个是腐蚀操作。最典型的应用是在二值图像

中使用这两个基本操作,是很多识别技术中重要的中间处理步骤。在灰度图像中根据阈值同

样可以完成膨胀与腐蚀操作。对一幅二值图像f(x,y)完成膨胀操作,与对图像的卷积操作类

似,要有个操作数矩阵,最常见的为3X3的矩阵,与卷积操作不同的,是如果矩阵中的像素

点有任意一个点的值是前景色,则设置中心像素点为前景色,否则不变。

关于卷积参考这里:http://blog.csdn.net/jia20003/article/details/7038938

程序效果:(上为源图,下为膨胀以后效果)


程序原理:

首先把一幅彩色图像转换为灰度图像,转换方法参见这里

http://blog.csdn.net/jia20003/article/details/7392325

然根据像素平均值作为阈值,转换为二值图像,转换方法参见这里

http://blog.csdn.net/jia20003/article/details/7392325

最后在二值图像上使用膨胀操作,输出处理以后图像

源代码:

package com.gloomyfish.morphology;

import java.awt.Color;
import java.awt.image.BufferedImage;

public class DilateFilter extends BinaryFilter {
	
	public DilateFilter() {
		forgeColor = Color.WHITE;
	}
	
	private Color forgeColor;

	public Color getForgeColor() {
		return forgeColor;
	}

	public void setForgeColor(Color forgeColor) {
		this.forgeColor = forgeColor;
	}

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		int width = src.getWidth();
        int height = src.getHeight();

        if ( dest == null )
        	dest = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        src = super.filter(src, null); // we need to create new one
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0, index1 = 0, newRow = 0, newCol = 0;
        int ta1 = 0, tr1 = 0, tg1 = 0, tb1 = 0;
        for(int row=0; row> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                boolean dilation = false;
                for(int offsetY=-1; offsetY<=1; offsetY++) {
                	for(int offsetX=-1; offsetX<=1; offsetX++) {
                		if(offsetY==0 && offsetX==0) {
                			continue;
                		}
                		newRow = row + offsetY;
                		newCol = col + offsetX;
                		if(newRow <0 || newRow >=height) {
                			newRow = 0;
                		}
                		if(newCol < 0 || newCol >=width) {
                			newCol = 0;
                		}
                		index1 = newRow * width + newCol;
                		ta1 = (inPixels[index1] >> 24) & 0xff;
                        tr1 = (inPixels[index1] >> 16) & 0xff;
                        tg1= (inPixels[index1] >> 8) & 0xff;
                        tb1 = inPixels[index1] & 0xff;
                        if(tr1 == forgeColor.getRed() && tg1 == tb1) {
	                        dilation = true;
	                        break;
                        }
                	}
                	if(dilation){
                		break;
                	}
                }
                
                if(dilation) {
                	tr = tg = tb = forgeColor.getRed();
                } else {
                	tr = tg = tb = 255 - forgeColor.getRed();
                }
                outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
        	}
        }
        setRGB( dest, 0, 0, width, height, outPixels );
        return dest;
	}

}
其实,膨胀还可以被用来进行对二值图像完成边缘提取,其基本做法如下:

1. 对一副黑白的图像完成膨胀操作

2.将膨胀以后的图像与原来的图像在每个像素位上相减

3.显示相减以后的图像,即得到边缘。

sorry,没有源代码!

你可能感兴趣的:(图像处理之二值膨胀及应用)