算法复杂度总结!

刚看到一个很好的算法复杂度总结的贴,果断转了。

原文链接:http://bigocheatsheet.com/#

坑爹,那些表格没法完全显示,大家可以点上面的链接看原文。

Searching

Algorithm Data Structure Time Complexity Space Complexity


Average Worst Worst
Depth First Search (DFS) Graph of |V| vertices and |E| edges - O(|E| + |V|) O(|V|)
Breadth First Search (BFS) Graph of |V| vertices and |E| edges - O(|E| + |V|) O(|V|)
Binary search Sorted array of n elements O(log(n)) O(log(n)) O(1)
Linear (Brute Force) Array O(n) O(n) O(1)
Shortest path by Dijkstra,
using a Min-heap as priority queue
Graph with |V| vertices and |E| edges O((|V| + |E|) log |V|) O((|V| + |E|) log |V|) O(|V|)
Shortest path by Dijkstra,
using an unsorted array as priority queue
Graph with |V| vertices and |E| edges O(|V|^2) O(|V|^2) O(|V|)
Shortest path by Bellman-Ford Graph with |V| vertices and |E| edges O(|V||E|) O(|V||E|) O(|V|)

Sorting

Algorithm Data Structure Time Complexity Worst Case Auxiliary Space Complexity
    Best Average Worst Worst
Quicksort Array O(n log(n)) O(n log(n)) O(n^2) O(n)
Mergesort Array O(n log(n)) O(n log(n)) O(n log(n)) O(n)
Heapsort Array O(n log(n)) O(n log(n)) O(n log(n)) O(1)
Bubble Sort Array O(n) O(n^2) O(n^2) O(1)
Insertion Sort Array O(n) O(n^2) O(n^2) O(1)
Select Sort Array O(n^2) O(n^2) O(n^2) O(1)
Bucket Sort Array O(n+k) O(n+k) O(n^2) O(nk)
Radix Sort Array O(nk) O(nk) O(nk) O(n+k)

Data Structures

Data Structure Time Complexity Space Complexity
  Average Worst Worst
  Indexing Search Insertion Deletion Indexing Search Insertion Deletion  
Basic Array O(1) O(n) - - O(1) O(n) - - O(n)
Dynamic Array O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n) O(n)
Singly-Linked List O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n)
Doubly-Linked List O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n)
Skip List O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n) O(n log(n))
Hash Table - O(1) O(1) O(1) - O(n) O(n) O(n) O(n)
Binary Search Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n) O(n) O(n)
Cartresian Tree - O(log(n)) O(log(n)) O(log(n)) - O(n) O(n) O(n) O(n)
B-Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)
Red-Black Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)
Splay Tree - O(log(n)) O(log(n)) O(log(n)) - O(log(n)) O(log(n)) O(log(n)) O(n)
AVL Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)

Heaps

Heaps Time Complexity
  Heapify Find Max Extract Max Increase Key Insert Delete Merge  
Linked List (sorted) - O(1) O(1) O(n) O(n) O(1) O(m+n)
Linked List (unsorted) - O(n) O(n) O(1) O(1) O(1) O(1)
Binary Heap O(n) O(1) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(m+n)
Binomial Heap - O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n))
Fibonacci Heap - O(1) O(log(n))* O(1)* O(1) O(log(n))* O(1)

Graphs

Node / Edge Management Storage Add Vertex Add Edge Remove Vertex Remove Edge Query
Adjacency list O(|V|+|E|) O(1) O(1) O(|V| + |E|) O(|E|) O(|V|)
Incidence list O(|V|+|E|) O(1) O(1) O(|E|) O(|E|) O(|E|)
Adjacency matrix O(|V|^2) O(|V|^2) O(1) O(|V|^2) O(1) O(1)
Incidence matrix O(|V| ⋅ |E|) O(|V| ⋅ |E|) O(|V| ⋅ |E|) O(|V| ⋅ |E|) O(|V| ⋅ |E|) O(|E|)

Notation for asymptotic growth

letter bound growth
(theta) Θ upper and lower, tight[1] equal[2]
(big-oh) O upper, tightness unknown less than or equal[3]
(small-oh) o upper, not tight less than
(big omega) Ω lower, tightness unknown greater than or equal
(small omega) ω lower, not tight greater than

[1] Big O is the upper bound, while Omega is the lower bound. Theta requires both Big O and Omega, so that's why it's referred to as a tight bound (it must be both the upper and lower bound). For example, an algorithm taking Omega(n log n) takes at least n log n time but has no upper limit. An algorithm taking Theta(n log n) is far preferential since it takes AT LEAST n log n (Omega n log n) and NO MORE THAN n log n (Big O n log n).SO

[2] f(x)=Θ(g(n)) means f (the running time of the algorithm) grows exactly like g when n (input size) gets larger. In other words, the growth rate of f(x) is asymptotically proportional to g(n).

[3] Same thing. Here the growth rate is no faster than g(n). big-oh is the most useful because represents the worst-case behavior.

In short, if algorithm is __ then its performance is __
algorithm performance
o(n) < n
O(n) ≤ n
Θ(n) = n
Ω(n) ≥ n
ω(n) > n
Big-O Complexity Chart

Contribute

Edit these tables!

Authors:

  1. Eric Rowell
  2. Quentin Pleple
  3. Nick Dizazzo
  4. Michael Abed
  5. Adam Forsyth
  6. Jay Engineer
  7. Josh Davis
  8. makosblade
  9. Alejandro Ramirez
  10. Joel Friedly
  11. Robert Burke
  12. David Dorfman
  13. Eric Lefevre-Ardant
  14. Thomas Dybdahl Ahle

你可能感兴趣的:(算法,-,转载,算法,搜索,面试,复杂度分析)