TensorRT/parsers/caffe/caffeParser/caffeParser.cpp - parse源碼研讀

TensorRT/parsers/caffe/caffeParser/caffeParser.cpp - parse源碼研讀

  • TensorRT/parsers/caffe/caffeParser/caffeParser.cpp - parse
  • constructor
  • new (Classname)
  • Classname* const*
  • static_cast
  • unique\_ptr和shared_ptr混用?
  • \_size,has_
  • google::protobuf::RepeatedField::Get
  • Implicit Batch Dimension
  • 參考連結

TensorRT/parsers/caffe/caffeParser/caffeParser.cpp - parse

/*
一面為網路新增層(或是Plugin,PluginExt,PluginV2),
一面把層輸出的張量都存到mBlobNameToTensor這個字典內
如果建構過程都正常,最後會回傳mBlobNameToTensor,否則回傳nullptr
*/
const IBlobNameToTensor* CaffeParser::parse(INetworkDefinition& network,
                                            DataType weightType,
                                            bool hasModel)
{
    bool ok = true;
    /*
    這裡用到的mModel是在parse(INetworkDefinition&,DataType,bool)的caller:
    parse(const char*,const char*, INetworkDefinition&,DataType)中
    設定好的
    */
    /*
    CaffeWeightFactory::CaffeWeightFactory
    定義於TensorRT/parsers/caffe/caffeWeightFactory/caffeWeightFactory.cpp
    CaffeWeightFactory::CaffeWeightFactory(const trtcaffe::NetParameter& msg, DataType dataType, std::vector& tmpAllocs, bool isInitialized)
    此類別用於獲取、做型別轉換或隨機生成 神經網路的權重(nvinfer1::Weights)
    */
    CaffeWeightFactory weights(*mModel.get(), weightType, mTmpAllocs, hasModel);
    
    /*
    class BlobNameToTensor
    定義於TensorRT/parsers/caffe/blobNameToTensor.h
    其核心為mMap這個字典,用於把blob name對應到ITensor*
    */
    mBlobNameToTensor = new (BlobNameToTensor);

    // Get list of all available plugin creators
    int numCreators = 0;
    /*
    getPluginRegistry
    宣告於TensorRT/include/NvInferRuntimeCommon.h
    extern "C" TENSORRTAPI nvinfer1::IPluginRegistry* getPluginRegistry();
    回傳plugin registry
    */
    /*
    IPluginRegistry::getPluginCreatorList
    宣告於TensorRT/include/NvInferRuntimeCommon.h
    virtual IPluginCreator* const* getPluginCreatorList(int* numCreators) const noexcept = 0;
    回傳所有註冊過的Plugin creators及其數量
    如果沒有則回傳nullptr
    */
    /*
    解析plugin creator list並將mPluginRegistry設定好
    mPluginRegistry的角色是將plugin的名字對應到nvinfer1::IPluginCreator*
    */
    nvinfer1::IPluginCreator* const* tmpList = getPluginRegistry()->getPluginCreatorList(&numCreators);
    //至此numCreators已被更新
    for (int k = 0; k < numCreators; ++k)
    {
        if (!tmpList[k])
        {
            std::cout << "Plugin Creator for plugin " << k << " is a nullptr." << std::endl;
            continue;
        }
        /*
        IPluginCreator::getPluginName
        宣告於TensorRT/include/NvInferRuntimeCommon.h
        virtual const char* getPluginName() const TRTNOEXCEPT = 0;
        Return the plugin name
        */
        std::string pluginName = tmpList[k]->getPluginName();
        //將該nvinfer1::IPluginCreator*存到mPluginRegistry這個字典裡
        mPluginRegistry[pluginName] = tmpList[k];
    }

    /*
    這裡用到的mDeploy是在parse(INetworkDefinition&,DataType,bool)的caller:
    parse(const char*,const char*, INetworkDefinition&,DataType)中
    設定好的
    */
    //解析mDeploy的輸入,為network新增輸入,並將該ITensor存到mBlobNameToTensor這個數據結構裡
    for (int i = 0; i < mDeploy->input_size(); i++)
    {
        Dims dims;
        /*
        INetworkDefinition::hasImplicitBatchDimension
        宣告於TensorRT/include/NvInfer.h
        virtual bool hasImplicitBatchDimension() const TRTNOEXCEPT = 0;
        Query whether the network was created with an implicit batch dimension.
        檢查該網路是否有隱含的維度?
        */
        if (network.hasImplicitBatchDimension())
        {
            if (mDeploy->input_shape_size())
            {
                dims = DimsCHW{(int) mDeploy->input_shape().Get(i).dim().Get(1), (int) mDeploy->input_shape().Get(i).dim().Get(2), (int) mDeploy->input_shape().Get(i).dim().Get(3)};
            }
            else
            {
                // Deprecated, but still used in a lot of networks
                //看不懂?
                dims = DimsCHW{(int) mDeploy->input_dim().Get(i * 4 + 1), (int) mDeploy->input_dim().Get(i * 4 + 2), (int) mDeploy->input_dim().Get(i * 4 + 3)};
            }
        }
        else
        {
            std::cout << "Warning, setting batch size to 1. Update the dimension after parsing due to using explicit batch size." << std::endl;
            if (mDeploy->input_shape_size())
            {
                //顯式地將batch dimension指定為1
                dims = DimsNCHW{1, (int) mDeploy->input_shape().Get(i).dim().Get(1), (int) mDeploy->input_shape().Get(i).dim().Get(2), (int) mDeploy->input_shape().Get(i).dim().Get(3)};
            }
            else
            {
                // Deprecated, but still used in a lot of networks
                dims = DimsNCHW{1, (int) mDeploy->input_dim().Get(i * 4 + 1), (int) mDeploy->input_dim().Get(i * 4 + 2), (int) mDeploy->input_dim().Get(i * 4 + 3)};
            }
        }
        /*
        INetworkDefinition::addInput
        宣告於TensorRT/include/NvInfer.h
        virtual ITensor* addInput(const char* name, DataType type, Dims dimensions) TRTNOEXCEPT = 0;
        二維圖像的末三維永遠是 {C,H,W}
        三維圖像的末四維永遠是 {C,D,H,W}
        return The new tensor or nullptr if there is an error.
        */
        ITensor* tensor = network.addInput(mDeploy->input().Get(i).c_str(), DataType::kFLOAT, dims);
        //將輸入的張量記錄於mBlobNameToTensor這個字典內
        (*mBlobNameToTensor)[mDeploy->input().Get(i)] = tensor;
    }

    //解析mDeploy除輸入外的各層,為模型各層新建ITensor,並存到mBlobNameToTensor這個數據結構裡
    for (int i = 0; i < mDeploy->layer_size() && ok; i++)
    {
        const trtcaffe::LayerParameter& layerMsg = mDeploy->layer(i);
        /*
        trtcaffe::TEST
        enum Phase {
		   TRAIN = 0;
		   TEST = 1;
		}
		*/
		//如果是測試階段就跳過這一層?
        if (layerMsg.has_phase() && layerMsg.phase() == trtcaffe::TEST)
        {
            continue;
        }

        // If there is a inplace operation and the operation is
        // modifying the input, emit an error as
        //檢查該層是否有輸入同時扮演著輸出的角色,且為網路的輸入,如果有,則將ok設為false
        for (int j = 0; ok && j < layerMsg.top_size(); ++j)
        {
            for (int k = 0; ok && k < layerMsg.bottom_size(); ++k)
            {
                //該層的第k個輸入即第j個輸出?
                if (layerMsg.top().Get(j) == layerMsg.bottom().Get(k))
                {
                    auto iter = mBlobNameToTensor->find(layerMsg.top().Get(j).c_str());
                    //該層為網路輸入
                    /*
                    ITensor::isNetworkInput
                    定義於TensorRT/include/NvInfer.h
                    檢查該張量是否為網路輸入
                    */
                    if (iter != nullptr && iter->isNetworkInput())
                    {
                        ok = false;
                        std::cout << "TensorRT does not support in-place operations on input tensors in a prototxt file." << std::endl;
                    }
                }
            }
        }

        // If there is a pluginFactory provided, use layer name matching to handle the plugin construction
        /*
        如果該層是Plugin,則為網路新增Plugin(即該層),
        並將該層的輸出張量更新到mBlobNameToTensor這個字典裡
        */
        if (mPluginFactory && mPluginFactory->isPlugin(layerMsg.name().c_str()))
        {
            /*
            Weights
            定義於TensorRT/include/NvInferRuntime.h
            An array of weights used as a layer parameter.
            */
            /*
            getAllWeights
            定義於TensorRT/parsers/caffe/caffeWeightFactory/caffeWeightFactory.h
            std::vector CaffeWeightFactory::getAllWeights(const std::string& layerName);
            將某層的各blob的權重轉為DataType::kFLOAT型別,並放入一個向量後回傳
            */
            std::vector<Weights> w = weights.getAllWeights(layerMsg.name());
            /*
			class IPlugin
			定義於TensorRT/include/NvInferRuntime.h
			Plugin class for user-implemented layers.
			Plugins are a mechanism for applications to implement custom layers. Each plugin is owned by the application, and its lifetime
			must span any use of it by TensorRT
			*/
			/*
			IPluginFactory::createPlugin
			宣告於TensorRT/include/NvCaffeParser.h
			virtual nvinfer1::IPlugin* createPlugin(const char* layerName, const nvinfer1::Weights* weights, int nbWeights) TRTNOEXCEPT = 0;
			Creates a plugin.
			*/
			/*
			std::vector::empty
			bool empty() const noexcept;
			Test whether vector is empty
			*/
            IPlugin* plugin = mPluginFactory->createPlugin(layerMsg.name().c_str(), w.empty() ? nullptr : &w[0], w.size());
            /*
            ITensor
            定義於TensorRT/include/NvInfer.h
            A tensor in a network definition.
            */
            //設定該層的輸入inputs
            std::vector<ITensor*> inputs;
            for (int i = 0, n = layerMsg.bottom_size(); i < n; i++)
            {
                /*
                該層的輸入張量必為網路輸入或前一層的輸出,
                所以一定存在於mBlobNameToTensor這個字典中
                */
                inputs.push_back((*mBlobNameToTensor)[layerMsg.bottom(i)]);
            }

			/*
			nvcaffeparser1::IPluginFactoryExt
			定義於TensorRT/include/NvCaffeParser.h
			為IPluginFactory的子類別
			Plugin factory used to configure plugins with added support for TRT versioning
			*/
			/*
			nvcaffeparser1::IPluginFactoryExt::isPluginExt
			A user implemented function that determines if a layer configuration is provided by an IPluginExt.
			*/
            //將mPluginFactory由IPluginFactory*轉型為IPluginFactoryExt*
            //可以由上往下轉?
            bool isExt = mPluginFactoryIsExt && static_cast<IPluginFactoryExt*>(mPluginFactory)->isPluginExt(layerMsg.name().c_str());

			/*
			nvinfer1::ILayer
			定義於TensorRT/include/NvInfer.h
			Base class for all layer classes in a network definition.
			*/
			/*
			namespace::INetworkDefinition::addPlugin
			定義於TensorRT/include/NvInfer.h
			TRT_DEPRECATED virtual IPluginLayer* addPlugin(
        		ITensor* const* inputs, int nbInputs, IPlugin& plugin) TRTNOEXCEPT = 0;
        	Add a plugin layer to the network.
			*/
			/*
			IPluginExt
			定義於TensorRT/include/NvInferRuntime.h
			IPlugin的子類別
			*/
			// *static_cast(plugin):由父類別轉為子類別?
			//為其輸入添加Plugin
            ILayer* layer = isExt ? network.addPluginExt(&inputs[0], int(inputs.size()), *static_cast<IPluginExt*>(plugin))
                                  : network.addPlugin(&inputs[0], int(inputs.size()), *plugin);

			/*
			nvinfer1::ILayer::setName
			定義於TensorRT/include/NvInfer.h
			virtual void setName(const char* name) TRTNOEXCEPT = 0;
			Set the name of a layer.
			*/
            layer->setName(layerMsg.name().c_str());
            //plugin的輸出個數要等於layerMsg裡指定的輸出個數才合理
            if (plugin->getNbOutputs() != layerMsg.top_size())
            {
                std::cout << "Plugin layer output count is not equal to caffe output count" << std::endl;
                ok = false;
            }
            //把該層輸出張量的資訊更新到mBlobNameToTensor這個字典裡
            for (int i = 0, n = std::min(layer->getNbOutputs(), layerMsg.top_size()); i < n; i++)
            {
                (*mBlobNameToTensor)[layerMsg.top(i)] = layer->getOutput(i);
            }

			//為何到這邊才檢查layer是否為空?
            if (layer == nullptr)
            {
                std::cout << "error parsing layer type " << layerMsg.type() << " index " << i << std::endl;
                ok = false;
            }

            //如果做了mPluginFactory的部份,則略過下面getInferLibVersion() >= 5000的部份
            continue;
        }
        /*
        getInferLibVersion
        宣告於TensorRT/include/NvInferRuntimeCommon.h
        extern "C" TENSORRTAPI int getInferLibVersion();
        Return the library version number.
		The format is as for TENSORRT_VERSION: (TENSORRT_MAJOR * 1000) + (TENSORRT_MINOR * 100) + TENSOR_PATCH.
        */
        if (getInferLibVersion() >= 5000)
        {
            /*
	        如果該層是PluginV2,則為網路新增PluginV2(即該層),
	        並將該層的輸出張量更新到mBlobNameToTensor這個字典裡
	        */
            if (mPluginFactoryV2 && mPluginFactoryV2->isPluginV2(layerMsg.name().c_str()))
            {
                //不能同時使用IPluginFactory及IPluginFactoryV2
                if (mPluginFactory)
                {
	                /*
	                RETURN_AND_LOG_ERROR
	                定義於TensorRT/parsers/caffe/caffeMacros.h
	                輸出錯誤訊息message,並回傳nullptr
	                */
                    RETURN_AND_LOG_ERROR(nullptr, "Both IPluginFactory and IPluginFactoryV2 are set. If using TensorRT 5.0 or later, switch to IPluginFactoryV2");
                }
                std::vector<Weights> w = weights.getAllWeights(layerMsg.name());
                nvinfer1::IPluginV2* plugin = mPluginFactoryV2->createPlugin(layerMsg.name().c_str(), w.empty() ? nullptr : &w[0], w.size(), mPluginNamespace.c_str());
                std::vector<ITensor*> inputs;
                for (int i = 0, n = layerMsg.bottom_size(); i < n; i++)
                {
                    inputs.push_back((*mBlobNameToTensor)[layerMsg.bottom(i)]);
                }
                //V2不再需要區分isExt了
                ILayer* layer = network.addPluginV2(&inputs[0], int(inputs.size()), *plugin);
                layer->setName(layerMsg.name().c_str());
                if (plugin->getNbOutputs() != layerMsg.top_size())
                {
                    std::cout << "Plugin layer output count is not equal to caffe output count" << std::endl;
                    ok = false;
                }
                for (int i = 0, n = std::min(layer->getNbOutputs(), layerMsg.top_size()); i < n; i++)
                {
                    (*mBlobNameToTensor)[layerMsg.top(i)] = layer->getOutput(i);
                }

                if (layer == nullptr)
                {
                    std::cout << "error parsing layer type " << layerMsg.type() << " index " << i << std::endl;
                    ok = false;
                }
                continue;
            }
            // Use the TRT5 plugin creator method to check for built-in plugin support
            //上面mPluginFactory及mPluginFactoryV2都是使用者自定義的?
            //此處則是TRT內建的plugin?

	            /*
		        如果該層是Normalize,PriorBox,DetectionOutput,RPROI其中之一,
		        則為網路新增PluginV2(即該層),
		        並將該PluginV2更新到mNewPlugins這個向量裡,
		        且將該層的輸出張量更新到mBlobNameToTensor這個字典裡
		        */
                std::string pluginName;
                /*
                struct PluginFieldCollection
				{
				    int nbFields;              //!< Number of PluginField entries
				    const PluginField* fields; //!< Pointer to PluginField entries
				};
				*/
                nvinfer1::PluginFieldCollection fc;
                /*
                struct PluginField
                定義於TensorRT/include/NvInferRuntimeCommon.h
                struct PluginField
				{
				    const char* name{nullptr};
				    const void* data{nullptr};
				    PluginFieldType type{PluginFieldType::kUNKNOWN};
				    int32_t length{0};
				
				    PluginField(const char* name_ = nullptr, const void* data_ = nullptr, const PluginFieldType type_ = PluginFieldType::kUNKNOWN, int32_t length_ = 0)
				        : name(name_)
				        , data(data_)
				        , type(type_)
				        , length(length_)
				    {
				    }
				};
                Structure containing plugin attribute field names and associated data
                This information can be parsed to decode necessary plugin metadata
                記錄plugin屬性的struct
                */
                std::vector<nvinfer1::PluginField> f;
                if (layerMsg.type() == "Normalize")
                {
                    pluginName = "Normalize_TRT";
                    f = parseNormalizeParam(layerMsg, weights, *mBlobNameToTensor);
                }
                else if (layerMsg.type() == "PriorBox")
                {
                    pluginName = "PriorBox_TRT";
                    f = parsePriorBoxParam(layerMsg, weights, *mBlobNameToTensor);
                }
                else if (layerMsg.type() == "DetectionOutput")
                {
                    pluginName = "NMS_TRT";
                    f = parseDetectionOutputParam(layerMsg, weights, *mBlobNameToTensor);
                }
                else if (layerMsg.type() == "RPROI")
                {
                    pluginName = "RPROI_TRT";
                    f = parseRPROIParam(layerMsg, weights, *mBlobNameToTensor);
                }

                if (mPluginRegistry.find(pluginName) != mPluginRegistry.end())
                {
                    // Set fc
                    fc.nbFields = f.size();
                    //std::vector::data(): Returns a direct pointer to the memory array used internally by the vector to store its owned elements
                    fc.fields = f.empty() ? nullptr : f.data();
                    //std::map::at() : Returns a reference to the mapped value of the element identified with key k
                    /*
                    IPluginFactoryV2::createPlugin
                    宣告於TensorRT/include/NvInferRuntimeCommon.h
                    virtual IPluginV2* createPlugin(const char* name, const PluginFieldCollection* fc) TRTNOEXCEPT = 0;
                    Return a plugin object. Return nullptr in case of error.
                    */
                    nvinfer1::IPluginV2* pluginV2 = mPluginRegistry.at(pluginName)->createPlugin(layerMsg.name().c_str(), &fc);
                    assert(pluginV2);
                    //TRT5以來的新特性?,將IPluginV2收集到mNewPlugins這個向量裡
                    mNewPlugins.push_back(pluginV2);

                    std::vector<ITensor*> inputs;
                    for (int i = 0, n = layerMsg.bottom_size(); i < n; i++)
                    {
                        inputs.push_back((*mBlobNameToTensor)[layerMsg.bottom(i)]);
                    }

					/*
					namespace::INetworkDefinition::addPlugin
					定義於TensorRT/include/NvInfer.h
					virtual IPluginV2Layer* addPluginV2(ITensor* const* inputs, int nbInputs, IPluginV2& plugin) TRTNOEXCEPT = 0;
		        	Add a plugin layer to the network using the IPluginV2 interface.
					*/
                    auto layer = network.addPluginV2(&inputs[0], int(inputs.size()), *pluginV2);
                    layer->setName(layerMsg.name().c_str());
                    if (pluginV2->getNbOutputs() != layerMsg.top_size())
                    {
                        std::cout << "Plugin layer output count is not equal to caffe output count" << std::endl;
                        ok = false;
                    }
                    for (int i = 0, n = std::min(layer->getNbOutputs(), layerMsg.top_size()); i < n; i++)
                    {
                        (*mBlobNameToTensor)[layerMsg.top(i)] = layer->getOutput(i);
                    }

                    if (layer == nullptr)
                    {
                        std::cout << "error parsing layer type " << layerMsg.type() << " index " << i << std::endl;
                        ok = false;
                    }
                    continue;
                }

        }

        /*
        對Dropout,Input,Flatten等層做特殊的處理
        */
        if (layerMsg.type() == "Dropout")
        {
            //如果是Dropout層,在推理時直接把輸入當作輸出?
            //沒有network.addxxx,不需要為網路加層!
            (*mBlobNameToTensor)[layerMsg.top().Get(0)] = (*mBlobNameToTensor)[layerMsg.bottom().Get(0)];
            continue;
        }

        if (layerMsg.type() == "Input")
        {
	        /*
	        InputParameter
	        定義於TensorRT/parsers/caffe/proto/trtcaffe.proto
	        message InputParameter {
			  repeated BlobShape shape = 1;
			}
			*/
            const trtcaffe::InputParameter& p = layerMsg.input_param();
            for (int i = 0; i < layerMsg.top_size(); i++)
            {
                //第i個輸出的形狀
                const trtcaffe::BlobShape& shape = p.shape().Get(i);
                if (shape.dim_size() != 4)
                {
                    RETURN_AND_LOG_ERROR(nullptr, "error parsing input layer, TensorRT only supports 4 dimensional input");
                }
                else
                {
                    Dims d;
                    if (network.hasImplicitBatchDimension())
                    {
                        d = DimsCHW{(int) shape.dim().Get(1), (int) shape.dim().Get(2), (int) shape.dim().Get(3)};
                    }
                    else
                    {
                        std::cout << "Warning, setting batch size to 1. Update the dimension after parsing due to "
                                     "using explicit batch size."
                                  << std::endl;
                        d = DimsNCHW{1, (int) shape.dim().Get(1), (int) shape.dim().Get(2), (int) shape.dim().Get(3)};
                    }
                    //把輸入這一層的輸出張量記錄到mBlobNameToTensor這個字典裡
                    ITensor* tensor = network.addInput(layerMsg.top(i).c_str(), DataType::kFLOAT, d);
                    (*mBlobNameToTensor)[layerMsg.top().Get(i)] = tensor;
                }
            }
            continue;
        }
        if (layerMsg.type() == "Flatten")
        {
            //如果是Flatten層,直接把輸入當作輸出?
            //不需要為網路加層!
            ITensor* tensor = (*mBlobNameToTensor)[layerMsg.bottom().Get(0)];
            (*mBlobNameToTensor)[layerMsg.top().Get(0)] = tensor;
            std::cout << "Warning: Flatten layer ignored. TensorRT implicitly"
                         " flattens input to FullyConnected layers, but in other"
                         " circumstances this will result in undefined behavior."
                      << std::endl;
            continue;
        }

        //到了這裡才是TensorRT內建的層
        // Use parser table to lookup the corresponding parse function to handle the rest of the layers
        /*
        定義於TensorRT/parsers/caffe/caffeParser/opParsers/opParsers.h
        static std::unordered_map gParseTable;
        包含以下函數:
		Convolution
		Pooling
		InnerProduct
		ReLU
		Softmax
		SoftmaxWithLoss
		LRN
		Power
		Eltwise
		Concat
		Deconvolution
		Sigmoid
		TanH
		BatchNorm
		Scale
		Crop
		Reduction
		Reshape
		Permute
		ELU
		BNLL
		Clip
		AbsVal
		PReLU
        用於將層的名稱對應到解析該層的函數
        */
        auto v = gParseTable.find(layerMsg.type());

        if (v == gParseTable.end())
        {
            std::cout << "could not parse layer type " << layerMsg.type() << std::endl;
            ok = false;
        }
        else
        {
            /*
            (*v->second)是一個函數
            如:ILayer* parseInnerProduct(INetworkDefinition& network, const trtcaffe::LayerParameter& msg, CaffeWeightFactory& weightFactory, BlobNameToTensor& tensors);
            在(*v->second)函數內會為network新加層
            */
            /*
            mBlobNameToTensor本來就是BlobNameToTensor*型別的,
            為何此處還要static_cast
            static_cast(mBlobNameToTensor)
            */
            ILayer* layer = (*v->second)(network, layerMsg, weights, *static_cast<BlobNameToTensor*>(mBlobNameToTensor));
            if (layer == nullptr)
            {
                std::cout << "error parsing layer type " << layerMsg.type() << " index " << i << std::endl;
                ok = false;
            }
            else
            {
                layer->setName(layerMsg.name().c_str());
                //把該層的輸出更新到mBlobNameToTensor這個字典裡
                (*mBlobNameToTensor)[layerMsg.top(0)] = layer->getOutput(0);
            }
        }
    }

    //將mBlobNameToTensor自帶的字典裡的ITensor的名字都設為它所對應的key
    mBlobNameToTensor->setTensorNames();

    //如果過程都正常的話就回傳mBlobNameToTensor這個字典,否則回傳nullptr
    return ok && weights.isOK() && mBlobNameToTensor->isOK() ? mBlobNameToTensor : nullptr;
}

constructor

parse函數中有這麼一句:

mBlobNameToTensor = new (BlobNameToTensor);

不確定new CLASSNAMEnew (CLASSNAME)有何不同。

new (Classname)

parse函數中有這麼一句:

mBlobNameToTensor = new (BlobNameToTensor);

在類別名前後加括號有何用意?

Classname* const*

parse函數中有這麼一句:

nvinfer1::IPluginCreator* const* tmpList = getPluginRegistry()->getPluginCreatorList(&numCreators);

const後面加上*的用意是?

static_cast

parse函數中有這麼一句:

/*
class IPluginFactory
{
public:
    virtual bool isPlugin(const char* layerName) TRTNOEXCEPT = 0;

    virtual nvinfer1::IPlugin* createPlugin(const char* layerName, const nvinfer1::Weights* weights, int nbWeights) TRTNOEXCEPT = 0;

    virtual ~IPluginFactory() {}
};
*/

/*
class IPluginFactoryExt : public IPluginFactory
{
public:
    virtual int getVersion() const TRTNOEXCEPT
    {
        return NV_TENSORRT_VERSION;
    }

    virtual bool isPluginExt(const char* layerName) TRTNOEXCEPT = 0;
};
*/

//nvcaffeparser1::IPluginFactory* mPluginFactory{nullptr};
/**/static_cast<IPluginFactoryExt*>(mPluginFactory)/**/;

IPluginFactory*轉為IPluginFactoryExt*

還有:

/*
class IPlugin
{
public:
    virtual int getNbOutputs() const TRTNOEXCEPT = 0;

    virtual Dims getOutputDimensions(int index, const Dims* inputs, int nbInputDims) TRTNOEXCEPT = 0;

    virtual void configure(const Dims* inputDims, int nbInputs, const Dims* outputDims, int nbOutputs, int maxBatchSize) TRTNOEXCEPT = 0;

    virtual int initialize() TRTNOEXCEPT = 0;

    virtual void terminate() TRTNOEXCEPT = 0;

    virtual size_t getWorkspaceSize(int maxBatchSize) const TRTNOEXCEPT = 0;

    virtual int enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) TRTNOEXCEPT = 0;

    virtual size_t getSerializationSize() TRTNOEXCEPT = 0;

    virtual void serialize(void* buffer) TRTNOEXCEPT = 0;

    virtual ~IPlugin() {}
};

class IPluginExt : public IPlugin
{
public:
    virtual int getTensorRTVersion() const TRTNOEXCEPT
    {
        return NV_TENSORRT_VERSION;
    }
    
    virtual bool supportsFormat(DataType type, PluginFormat format) const TRTNOEXCEPT = 0;

    virtual void configureWithFormat(const Dims* inputDims, int nbInputs, const Dims* outputDims, int nbOutputs, DataType type, PluginFormat format, int maxBatchSize) TRTNOEXCEPT = 0;

    virtual ~IPluginExt() {}

protected:
    void configure(const Dims*, int, const Dims*, int, int) _TENSORRT_FINAL TRTNOEXCEPT {}
};
*/
//IPlugin* plugin = mPluginFactory->createPlugin(layerMsg.name().c_str(), w.empty() ? nullptr : &w[0], w.size());
/**/static_cast<IPluginExt*>(plugin)/**/;

IPlugin*轉為IPluginExt*

注意到在上面兩個例子中,欲轉換的指標本來都是抽象類別的指標。並且它們都是使用static_cast做downcasting?

unique_ptr和shared_ptr混用?

以下兩行:

//std::shared_ptr mModel;
mModel = std::unique_ptr<trtcaffe::NetParameter>(new trtcaffe::NetParameter);

//std::shared_ptr mDeploy;
mDeploy = std::unique_ptr<trtcaffe::NetParameter>(new trtcaffe::NetParameter);

都把unique_ptr型別的指標指定給宣告為shared_ptr型別的指標,其用意為?

_size,has_

parse函數中用到了如:

/**/mDeploy->input_size()/**/
/**/layerMsg.has_phase()/**/

這些帶_sizehas_的函數,但是這些函數並沒有出現在trtcaffe.proto中。他們是從何而來的呢?詳見Protocol Buffer(proto2)及C++ API。

google::protobuf::RepeatedField::Get

parse函數中用到了google::protobuf::RepeatedField::Get函數:

dims = DimsCHW{(int) mDeploy->input_shape().Get(i).dim().Get(1), (int) mDeploy->input_shape().Get(i).dim().Get(2), (int) mDeploy->input_shape().Get(i).dim().Get(3)};

詳見C++ google protobuf。

Implicit Batch Dimension

INetworkDefinition::hasImplicitBatchDimension函數用於檢查網路是否含有隱含的維度?

參考連結

std::vector::empty

Protocol Buffer(proto2)及C++ API

C++ google protobuf

你可能感兴趣的:(TensorRT源碼研讀筆記,深度学习,caffe,机器学习,c++)