上面一节分析了arp协议的初始化过程。本节主要是arp数据包的处理流程,在arp初始化时,通过调用dev_add_pack将arp协议的接收处理函数添加到了三层协议数据包处理函数相关的hash链表ptype_base中(关于三层协议数据包处理函数相关的hash链表,请参考文档http://blog.csdn.net/lickylin/article/details/22900401)。当底层接收到属于本机的arp数据包时,就会调用arp_rcv进行后续处理。
下面我们就分析arp_rcv以及与其相关的函数.
arp_rcv的定义如下, 该函数主要就是arp_process的封装,相比arp_process主要是增加了arp数据包的合理性检查,以及增加防火墙的hook函数。对于满足要求的数据包才会调用arp_process。
功能:对接收到的arp数据包的处理函数
1、首先对arp数据包进行合理性检查
2、调用NF_HOOK,判断是否需要对arp进行进一步的处理,对于需要
进一步处理的数据包,则调用arp_process进行后续处理。
static intarp_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct arphdr *arp;
/* ARP header, plus 2 device addresses, plus2 IP addresses. */
if (!pskb_may_pull(skb, arp_hdr_len(dev)))
goto freeskb;
arp = arp_hdr(skb);
if (arp->ar_hln != dev->addr_len ||
dev->flags & IFF_NOARP ||
skb->pkt_type == PACKET_OTHERHOST ||
skb->pkt_type == PACKET_LOOPBACK ||
arp->ar_pln != 4)
goto freeskb;
if ((skb = skb_share_check(skb, GFP_ATOMIC))== NULL)
goto out_of_mem;
memset(NEIGH_CB(skb), 0, sizeof(structneighbour_cb));
return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb,dev, NULL, arp_process);
freeskb:
kfree_skb(skb);
out_of_mem:
return 0;
}
下面我们分析arp_process
功能:处理一个arp请求
对于arp_process,主要是考虑如下几个方面:
1、arp数据包的格式是否正确,是否是属于系统支持的邻居项协议
2、是否需要丢弃接收到的arp数据包
3、处理符合条件的arp数据包。
下面是处理arp包的几个条件:
丢弃数据包的标准:
1、arp_process只处理request、reply的arp数据包,丢弃其他类型的数据包
a)对于类型为request的数据包,丢弃目的地址是组播或者loopback的arp数据。
对于需要处理的数据包,大致可以分为几个方面:
1、对本机发送的arp 请求的应答数据包的处理
2、arp 请求数据包
a)目的地址是本地地址,且源地址不为0的arp 请求数据包
b)目的地址是本地地址,且源地址为0的重复地址检测的arp请求数据包
3、非本地发送的arp请求的应答数据包
static intarp_process(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
struct in_device *in_dev = in_dev_get(dev);
struct arphdr *arp;
unsigned char *arp_ptr;
struct rtable *rt;
unsigned char *sha;
__be32 sip, tip;
u16 dev_type = dev->type;
int addr_type;
struct neighbour *n;
struct net *net = dev_net(dev);
/* arp_rcv below verifies the ARP header andverifies the device
* isARP'able.
*/
if (in_dev == NULL)
goto out;
/*调用arp_hdr获取skb数据中arp头的开始指针*/
arp = arp_hdr(skb);
/*判断设备的类型与数据包中的硬件类型是否相符*/
switch (dev_type) {
default:
if (arp->ar_pro != htons(ETH_P_IP) ||
htons(dev_type) != arp->ar_hrd)
goto out;
break;
case ARPHRD_ETHER:
case ARPHRD_IEEE802_TR:
case ARPHRD_FDDI:
case ARPHRD_IEEE802:
/*
*ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
*devices, according to RFC 2625) devices will accept ARP
*hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
*This is the case also of FDDI, where the RFC 1390 says that
*FDDI devices should accept ARP hardware of (1) Ethernet,
*however, to be more robust, we'll accept both 1 (Ethernet)
*or 6 (IEEE 802.2)
*/
if ((arp->ar_hrd !=htons(ARPHRD_ETHER) &&
arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
arp->ar_pro != htons(ETH_P_IP))
goto out;
break;
case ARPHRD_AX25:
if (arp->ar_pro != htons(AX25_P_IP) ||
arp->ar_hrd != htons(ARPHRD_AX25))
goto out;
break;
case ARPHRD_NETROM:
if (arp->ar_pro != htons(AX25_P_IP) ||
arp->ar_hrd != htons(ARPHRD_NETROM))
goto out;
break;
}
/* Understand only these message types */
if (arp->ar_op != htons(ARPOP_REPLY)&&
arp->ar_op != htons(ARPOP_REQUEST))
goto out;
/*
* Extractfields
*/
/*
获取arp数据包中源mac地址、源ip地址、目的mac地址、目的ip地址
*/
arp_ptr= (unsigned char *)(arp+1);
sha =arp_ptr;
arp_ptr += dev->addr_len;
memcpy(&sip, arp_ptr, 4);
arp_ptr += 4;
arp_ptr += dev->addr_len;
memcpy(&tip, arp_ptr, 4);
/*
* Checkfor bad requests for 127.x.x.x and requests for multicast
* addresses. If this is one such, delete it.
*/
/*丢弃目的地址是组播或者loopback的arp数据(对于组播地址和loopback地址是不需要arp)*/
if (ipv4_is_loopback(tip) ||ipv4_is_multicast(tip))
goto out;
/*
* Special case: We must set Frame Relay source Q.922 address
*/
if (dev_type == ARPHRD_DLCI)
sha = dev->broadcast;
/*
* Process entry. The idea here iswe want to send a reply if it is a
* request for us or if it is a request for someone else that we hold
* aproxy for. We want to add an entry toour cache if it is a reply
* to usor if it is a request for our address.
* (Theassumption for this last is that if someone is requesting our
* address, they are probably intending to talk to us, so it saves time
* if wecache their address. Their address isalso probably not in
* ourcache, since ours is not in their cache.)
*
* Putting this another way, we only care about replies if they are to
* us,in which case we add them to the cache. For requests, we care
* aboutthose for us and those for our proxies. We reply to both,
* andin the case of requests for us we add the requester to the arp
* cache.
*/
/* Special case: IPv4 duplicate addressdetection packet (RFC2131) */
/*对于源ip地址是0的arp请求,一般用于重复地址检测,
此时如果arp类型为request,且目的ip地址是本地地址,且可以进行arp应答时,
则调用arp_send发送arp reply数据包。*/
/*
对于源地址为0的数据包,在发送arp 应答报文时,为什么没有先查找路由表呢?
在我们建立路由表时,都会建立一个全零的默认路由,所以对于目的ip为0的
数据包,其路由是一直存在的。所以在处理时不用查找路由表,直接生成
arpreply数据包,并发送出去。
*/
if (sip == 0) {
if (arp->ar_op == htons(ARPOP_REQUEST)&&
inet_addr_type(net, tip) == RTN_LOCAL &&
!arp_ignore(in_dev, sip, tip))
arp_send(ARPOP_REPLY, ETH_P_ARP, sip,dev, tip, sha,
dev->dev_addr, sha);
goto out;
}
/*
对于arp 类型为request的数据包,且能找到到目的地址tip的路由,则执行下面的代码
*/
if (arp->ar_op == htons(ARPOP_REQUEST)&&
ip_route_input(skb, tip, sip, 0, dev) == 0) {
/*获取tip对应的路由缓存*/
rt = skb_rtable(skb);
addr_type = rt->rt_type;
/*1、如果路由缓存对应的ip地址类型为local,则调用neigh_event_ns,查找符合条件的邻居项
a)如果找到符合条件的邻居项,则调用arp_send发送对该arp request包的reply包,并返回
b)直接返回。
2、如果路由缓存对应的ip地址类型不是local,则进行arp proxy的处理,完成后
直接返回
*/
if (addr_type == RTN_LOCAL) {
int dont_send = 0;
if (!dont_send)
dont_send |=arp_ignore(in_dev,sip,tip);
if (!dont_send &&IN_DEV_ARPFILTER(in_dev))
dont_send |=arp_filter(sip,tip,dev);
if (!dont_send) {
n = neigh_event_ns(&arp_tbl,sha, &sip, dev);
if (n) {
arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
neigh_release(n);
}
}
goto out;
} else if (IN_DEV_FORWARD(in_dev)) {
if (addr_type == RTN_UNICAST &&
(arp_fwd_proxy(in_dev, dev, rt) ||
arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))
{
n = neigh_event_ns(&arp_tbl,sha, &sip, dev);
if (n)
neigh_release(n);
if (NEIGH_CB(skb)->flags &LOCALLY_ENQUEUED ||
skb->pkt_type == PACKET_HOST ||
in_dev->arp_parms->proxy_delay == 0) {
arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
} else {
pneigh_enqueue(&arp_tbl,in_dev->arp_parms, skb);
in_dev_put(in_dev);
return 0;
}
goto out;
}
}
}
/* Update our ARP tables */
/*
1、对于arp reply数据包,进入下面的处理流程
2、对于arp request数据包,且没有找到tip ip对应的路由缓存
*/
/*调用__neigh_lookup,查找arp_tbl的neighbour hash bucket,查找sip对应的邻居项*/
n = __neigh_lookup(&arp_tbl, &sip,dev, 0);
/*对于系统允许非arp请求的arp reply,则进行如下处理*/
if (IPV4_DEVCONF_ALL(dev_net(dev),ARP_ACCEPT)) {
/* Unsolicited ARP is not accepted bydefault.
It is possible, that this option should be enabled for some
devices (strip is candidate)
*/
/*1、对于非由arp请求的arp reply,且没有相应的neighbour,则强制创建新的neighbour
2、对于sip与tip相等的arp request,也强制创建新的neighbour ??
*/
if (n == NULL &&
(arp->ar_op == htons(ARPOP_REPLY) ||
(arp->ar_op == htons(ARPOP_REQUEST) && tip == sip))&&
inet_addr_type(net, sip) == RTN_UNICAST)
n = __neigh_lookup(&arp_tbl,&sip, dev, 1);
}
/*如果查找到符合条件的neighbour,则执行如下代码
1、对于发给给本机的arp reply报文,则将邻居项设置为reach状态
2、对于发给给本机的arp request报文,则将邻居项状态设置为stale状态
最后调用neigh_update,更新neighbour的状态
*/
if (n) {
int state = NUD_REACHABLE;
int override;
/* If several different ARP repliesfollows back-to-back,
use the FIRST one. It is possible, if several proxy
agents are active. Taking the first reply prevents
arp trashing and chooses the fastest router.
*/
override = time_after(jiffies,n->updated + n->parms->locktime);
/* Broadcast replies and request packets
do not assert neighbour reachability.
*/
if (arp->ar_op != htons(ARPOP_REPLY)||
skb->pkt_type != PACKET_HOST)
state = NUD_STALE;
neigh_update(n, sha, state, override ?NEIGH_UPDATE_F_OVERRIDE : 0);
neigh_release(n);
}
out:
if (in_dev)
in_dev_put(in_dev);
consume_skb(skb);
return 0;
}
在上面的函数里,出现了发送arp数据包的函数arp_send,下面我们分析arp_send与arp_create
arp_send就是arp_create的封装函数,相比arp_creare,增加了判断设备是否为NOARP的设备。
void arp_send(int type, int ptype, __be32dest_ip,
struct net_device *dev, __be32 src_ip,
const unsigned char *dest_hw, const unsigned char *src_hw,
const unsigned char *target_hw)
{
struct sk_buff *skb;
/*
* No arp on this interface.
*/
/*
如果该设备不需要arp,则直接返回
*/
if (dev->flags&IFF_NOARP)
return;
skb = arp_create(type, ptype, dest_ip, dev,src_ip,
dest_hw, src_hw, target_hw);
if (skb == NULL) {
return;
}
arp_xmit(skb);
}
下面分析arp_create
该函数主要是申请一个缓存,并根据arp协议的格式,创建一个arp数据包。该函数还是比较简单的。
struct sk_buff*arp_create(int type, int ptype, __be32 dest_ip,
struct net_device *dev, __be32 src_ip,
const unsigned char *dest_hw,
const unsigned char *src_hw,
const unsigned char *target_hw)
{
struct sk_buff *skb;
struct arphdr *arp;
unsigned char *arp_ptr;
/*
* Allocate a buffer
*/
/*首先调用alloc_skb,申请缓存空间*/
skb = alloc_skb(arp_hdr_len(dev) +LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
if (skb == NULL)
return NULL;
/*留出源、目的mac地址的空间*/
skb_reserve(skb, LL_RESERVED_SPACE(dev));
/*设置三层头部指针*/
skb_reset_network_header(skb);
/*设置arp头指针*/
arp = (struct arphdr *) skb_put(skb,arp_hdr_len(dev));
skb->dev = dev;
skb->protocol = htons(ETH_P_ARP);
/*设置源、目的mac地址*/
if (src_hw == NULL)
src_hw = dev->dev_addr;
if (dest_hw == NULL)
dest_hw = dev->broadcast;
/*
* Fill the device header for the ARP frame
*/
/*通过调用eth_header,填充二层头部*/
if (dev_hard_header(skb, dev, ptype,dest_hw, src_hw, skb->len) < 0)
goto out;
/*
*Fill out the arp protocol part.
*
* Thearp hardware type should match the device type, except for FDDI,
*which (according to RFC 1390) should always equal 1 (Ethernet).
*/
/*
* Exceptions everywhere. AX.25 uses the AX.25PID value not the
* DIX code for the protocol. Make these devicestructure fields.
*/
switch (dev->type) {
default:
/*设置硬件协议类型与软件协议类型,对于Ethernet硬件类型为1软件类型为0x0800*/
arp->ar_hrd = htons(dev->type);
arp->ar_pro = htons(ETH_P_IP);
break;
#ifdefined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
case ARPHRD_AX25:
arp->ar_hrd = htons(ARPHRD_AX25);
arp->ar_pro = htons(AX25_P_IP);
break;
#ifdefined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
case ARPHRD_NETROM:
arp->ar_hrd = htons(ARPHRD_NETROM);
arp->ar_pro = htons(AX25_P_IP);
break;
#endif
#endif
#ifdefined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
case ARPHRD_FDDI:
arp->ar_hrd = htons(ARPHRD_ETHER);
arp->ar_pro = htons(ETH_P_IP);
break;
#endif
#ifdefined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
case ARPHRD_IEEE802_TR:
arp->ar_hrd = htons(ARPHRD_IEEE802);
arp->ar_pro = htons(ETH_P_IP);
break;
#endif
}
/*设置硬件协议长度、软件协议长度、arp包类型*/
arp->ar_hln = dev->addr_len;
arp->ar_pln = 4;
arp->ar_op = htons(type);
/*设置arp的源mac、ip 与目的mac、ip地址*/
arp_ptr=(unsigned char *)(arp+1);
memcpy(arp_ptr, src_hw, dev->addr_len);
arp_ptr += dev->addr_len;
memcpy(arp_ptr, &src_ip, 4);
arp_ptr += 4;
if (target_hw != NULL)
memcpy(arp_ptr, target_hw,dev->addr_len);
else
memset(arp_ptr, 0, dev->addr_len);
arp_ptr += dev->addr_len;
memcpy(arp_ptr, &dest_ip, 4);
return skb;
out:
kfree_skb(skb);
return NULL;
}
对于arp_send,既可以发送arp请求数据包,也可以发送arp应答报文,主要是在arp_process中调用。对于应答报文,回复的依据为:
1)对于重复地址检测请求,则发送一个arp reply消息。
2)对于发往本地的arp request,则发送一个arp reply消息,并将邻居项的状态设置为NUD_STALE。
Arp 邻居项的创建以及arp solicit请求发送的流程
那对于arp request消息是如何发送的呢?
当本地有数据需要发送时,则会查找路由,在查找到路由且没有路由缓存时,则会创建路由缓存,而在创建路由缓存的过程中,就会调用arp_bind_neighbour,实现路由缓存与arp邻居项的绑定,对于不存在的邻居项,则创建该邻居项,并将邻居项的状态设置为NUD_NONE。
此时邻居项的状态还是NUD_NONE。接着就会执行ip_output,然后就会调用到ip_finish_output2,接着就会调用到neighbour->output,对于刚创建的邻居项,其output为neigh_resolve_output。在neigh_resolve_output里就会调用到__neigh_event_send判断数据包是否可以直接发送出去,如果此时邻居项的状态为NUD_NONE,则会将邻居项的状态设置为NUD_INCOMPLETE,并将要发送的数据包缓存到邻居项的队列中。而处于NUD_INCOMPLETE状态的邻居项的状态转变会有定时器处理函数来实现。
由以前的分析,我们知道处于NUD_INCOMPLETE状态的邻居项,就会调用neigh->solicit,发送邻居项请求的数据包,对于arp 来说,其neigh->solicit即为arp_solicit,在分析之前,首先需要理解 arp announce的级别
当发送arp请求的主机对应的ip地址不止一个时,arp announce级别
决定如何选择ip地址
0:任何ip地址都可以
1:尽可能选择和目的ip处于同一个子网的ip地址,否则使用级别2的选择
2:优先使用主地址
static void arp_solicit(struct neighbour *neigh,struct sk_buff *skb)
{
__be32 saddr= 0;
u8 *dst_ha = NULL;
structnet_device *dev = neigh->dev;
__be32 target= *(__be32*)neigh->primary_key;
int probes =atomic_read(&neigh->probes);
/* 获取源设备ip层的相关信息*/
structin_device *in_dev = in_dev_get(dev);
if (!in_dev)
return;
switch(IN_DEV_ARP_ANNOUNCE(in_dev)) {
default:
case 0: /* By default announce any local IP */
/*判断数据包的源地址是否为本地地址。
若是,则将源地址设置为数据包的源地址;
若不是,则调用inet_select_addr选择一个源地址*/
if (skb&& inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
saddr= ip_hdr(skb)->saddr;
break;
case 1: /* Restrict announcements of saddr insame subnet */
/*判断数据包的源地址是否为本地地址。
若是,则优先选择与目的ip地址在相同子网上的ip地址,否则则调用
inet_select_addr优先使用主地址*/
if (!skb)
break;
saddr =ip_hdr(skb)->saddr;
if(inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
/*saddr should be known to target */
if(inet_addr_onlink(in_dev, target, saddr))
break;
}
saddr = 0;
break;
case 2: /* Avoid secondary IPs, get aprimary/preferred one */
/*调用inet_select_addr优先获取一个符合条件的主地址*/
break;
}
if (in_dev)
in_dev_put(in_dev);
/*若此时还没有设置源ip地址,则调用inet_select_addr获取ip地址
该函数主要实现的功能
1、对于指定设备dev所关联的ip配置块,查找scope小于等于RT_SCOPE_LINK且与目的地址
属于同一子网的地址作为源ip地址
2、对于符合scope条件的ip地址,若没有子网相同的地址,则选择主地址作为源
ip地址
3、对于在指定设备dev上找不到满足scope条件的ifaddr结构,则遍历所有dev设备,找到
符合条件的ifaddr结构,并将其主地址作为源ip地址。
*/
if (!saddr)
saddr =inet_select_addr(dev, target, RT_SCOPE_LINK);
/*判断arp请求报文是否到达上限,若到达上限则不发送*/
if ((probes-= neigh->parms->ucast_probes) < 0) {
if(!(neigh->nud_state&NUD_VALID))
printk(KERN_DEBUG"trying to ucast probe in NUD_INVALID\n");
dst_ha =neigh->ha;
read_lock_bh(&neigh->lock);
} else if((probes -= neigh->parms->app_probes) < 0) {
#ifdef CONFIG_ARPD
neigh_app_ns(neigh);
#endif
return;
}
/*调用arp_send发送arp请求包*/
arp_send(ARPOP_REQUEST,ETH_P_ARP, target, dev, saddr,
dst_ha, dev->dev_addr, NULL);
if (dst_ha)
read_unlock_bh(&neigh->lock);
}。
刚才我们有提到arp_bind_neighbour,下面分析一下这个函数:
实现arp协议中,neighbour项与路由缓存中的dst_entry表项的绑定
通过下一跳网关地址和net_dev为关键字查找一个neighbour项
1、若查找到,则将dst->neighbour指向该neighbour项
2、若没有查找到,则调用neigh_create创建一个邻居表项并加入到arp_table的邻居表项链表中,并将dst->neighbour指向该neighbour项
int arp_bind_neighbour(struct dst_entry *dst)
{
structnet_device *dev = dst->dev;
structneighbour *n = dst->neighbour;
if (dev ==NULL)
return-EINVAL;
if (n ==NULL) {
__be32nexthop = ((struct rtable *)dst)->rt_gateway;
if(dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
nexthop= 0;
n =__neigh_lookup_errno(
#if defined(CONFIG_ATM_CLIP) ||defined(CONFIG_ATM_CLIP_MODULE)
dev->type == ARPHRD_ATM ? clip_tbl_hook:
#endif
&arp_tbl, &nexthop, dev);
if(IS_ERR(n))
returnPTR_ERR(n);
dst->neighbour= n;
}
return 0;
}
至此完成arp 协议数据处理分析。