- 多头注意力机制中全连接函数
不知更鸟
深度学习
在神经网络(特别是Transformer中的多头注意力机制)中,全连接函数(FullyConnectedLayer,FCLayer)通常指的是一个线性变换层,即nn.Linear在PyTorch中的实现。它本质上是一个矩阵乘法加上偏置(bias)的操作,用于对输入数据进行线性变换。1.全连接函数(nn.Linear)是什么?nn.Linear(d_model,d_model)表示一个全连接层,它的
- GNU Octave 基础教程(8):GNU Octave 常用数学函数
方博士AI机器人
GNUOctave基础教程机器学习算法人工智能
目录一、基本算术运二、初等数学函数三、三角函数与反三角函数四、统计函数五、复数与其他函数✅小结下一讲预告GNUOctave内置了大量数学函数,涵盖初等数学、线性代数、复数运算、统计函数等,非常适合科研、工程计算使用。本节将系统地梳理Octave中最常用的数学函数,并附上示例代码与输出结果。一、基本算术运运算符号/函数示例加法+a+b减法-a-b乘法*/.*A*B(矩阵乘法),A.*B(逐元素)除法
- 数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
猫头虎技术团队
已解决的Bug专栏线性代数opencv数据挖掘语音识别计算机视觉人工智能机器学习
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全机器学习/深度学习的核心算法背后,往往需要用到矩阵运算、特征向量、梯度下降等;如果连矩阵乘法、特征值、偏导数都没搞懂,就很难理解模型原理。摘要文章目录数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全摘要1.开发场景介绍1.1场景背景1.2技术细节2.开发环境3.问题分析3.1线性代数缺失带来的挑战3.2概率统计短板
- C语言实现4x4矩阵乘法的详细教程
Kimgoeunlaogong
本文还有配套的精品资源,点击获取简介:矩阵乘法是线性代数的基本操作,在计算机科学的多个领域中有广泛应用。本文详细解释了如何用C语言编写程序来实现两个4x4矩阵的乘法。我们将探讨矩阵乘法的数学原理,并通过C语言的二维数组和嵌套循环来编写代码。该程序将为学习线性代数和C语言编程提供一个实践案例。1.矩阵乘法的数学原理矩阵乘法不仅在线性代数中占据着重要地位,也是计算机科学中不可或缺的一部分。了解矩阵乘法
- MIT线性代数第三讲笔记
可耳(keer)
线性代数笔记
视频链接https://www.youtube.com/watch?v=FX4C-JpTFgY3.1矩阵乘法以A∗B=CA*B=CA∗B=C为例,其中矩阵A是m∗nm*nm∗n,矩阵B是n∗pn*pn∗p,矩阵C则是m∗pm*pm∗p单个元素求矩阵C中的每一个元素,公式如下:cij=∑k=1naik∗bkjc_{ij}=\sum_{k=1}^na_{ik}*b_{kj}cij=k=1∑naik∗b
- CUDA核函数优化进阶:利用Shared Memory实现矩阵计算10倍加速
AI咸鱼保护协会
人工智能深度学习AI矩阵CUDA
在NVIDIAA100上优化1024×1024矩阵乘法时,共享内存策略将计算速度从3.2TFLOPS提升至31.5TFLOPS——本文将揭示如何通过内存访问优化突破GPU计算瓶颈。一、GlobalMemory的致命瓶颈1.1显存访问代价分析以矩阵乘法$C=A\timesB$为例,计算每个$C_{ij}$需访问A的一行和B的一列:GlobalMemory延迟:约400-800周期计算指令延迟:仅20
- 【AI大模型】14、Transformer架构深度解析:从并行计算到千亿参数模型的扩展密码
无心水
AI大模型人工智能transformer架构AI大模型Transformer模型扩展特征工程自动化特征工程
一、Transformer的基因密码:并行化架构的革命性突破(一)序列计算的历史性突破在Transformer诞生之前,RNN/LSTM等序列模型受困于串行计算的天然缺陷:时间复杂度瓶颈:处理长度为N的序列需O(N)时间,且无法并行,导致训练速度随序列长度呈线性下降。例如,LSTM处理512长度文本需512次递归计算,而Transformer仅需一次矩阵乘法。长距离依赖困境:通过隐藏状态传递信息的
- 算法导论第四章:分治策略的艺术与科学
W说编程
算法导论数据结构与算法算法数据结构c语言性能优化
算法导论第四章:分治策略的艺术与科学本文是《算法导论》精讲专栏第四章,通过问题分解可视化、递归树分析和数学证明,结合完整C语言实现,深入解析分治策略的精髓。包含最大子数组、矩阵乘法、最近点对等经典问题的完整实现与优化技巧。1.分治策略:化繁为简的智慧1.1分治法核心思想原问题分解子问题1子问题2子问题n解决合并最终解分治三步曲:分解:将问题划分为规模更小的子问题解决:递归解决子问题(基线条件直接求
- 机器学习四剑客:Numpy、Pandas、PIL、Matplotlib 完全指南
摘取一颗天上星️
机器学习numpypandas
在机器学习领域,这四个Python库构成了数据处理和可视化的核心工具链。它们各司其职又紧密协作,形成了完整的数据处理流水线:1.Numpy:科学计算基石核心功能:多维数组操作与数值计算importnumpyasnp#创建数组arr=np.array([[1,2,3],[4,5,6]])#数学运算sines=np.sin(arr)#每个元素求正弦
[email protected]#矩阵乘法#高级索引s
- 拉力测试cuda pytorch 把 4070显卡拉满
MYH516
pytorch人工智能python
importtorchimporttimedefstress_test_gpu(matrix_size=16384,duration=300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size:矩阵维度大小,增大可提高计算复杂度duration:测试持续时间(秒)"""#检查CUDA是否可用ifnottorch.cuda.is_available():
- 矩阵乘法--Python
bj3281
矩阵pythonjava
矩阵乘法一、问题引入二、解题步骤1.思维导图2.解题步骤三、代码实现四、个人小结一、问题引入输入格式:第一行为n,m,k,表示A矩阵是n行m列,B矩阵是m行k列,n,m,k均小于20然后先后输入A和B两个矩阵,A矩阵n行m列,B矩阵m行k列,矩阵中每个元素的绝对值不会大于5000。输出格式:输出矩阵C,一共n行,每行k个整数,整数之间以一个空格分开。输入样例:在这里给出一组输入。例如:323111
- TPU结构总结
枫溪夜影
人工智能
TPU只完成推理过程,训练过程在GPU上完成。TPU可以像GPU一样通过PCIe总线接口挂载到现有的服务器上。设计目标是为了在TPU上完成所有的推理模型,从而减少和主机CPU的交互,进而满足2015年及今后的神经网络需求。下图是TPU的整体结构框图。主机通过PCIeGen3x16的总线发送TPU的指令到其中的指令buffer内,内部模块之间通过典型的256位宽通路连接。右上角的矩阵乘法单元是TPU
- MIT线性代数笔记03-矩阵乘法和逆矩阵
loneux
线性代数矩阵机器学习
LinearAlgebra-Lecture03矩阵乘法和逆矩阵GilbertStrang矩阵乘法对于矩阵乘法AB=C\bold{AB=C}AB=C主要有5种方法可用于计算:【前提条件】:A,B\bold{A},\bold{B}A,B两个矩阵行列要匹配,A\bold{A}A的列数要等于B\bold{B}B的行数。[a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn][b11b12⋯
- 线性代数学习笔记3-2:矩阵乘法的理解
Insomnia_X
线性代数学习笔记线性代数矩阵学习
矩阵向量乘法计算矩阵乘法,有多种理解方式矩阵与向量的乘法,可以理解为矩阵各个列向量的线性组合[abcd][xy]=[ax+bycx+dy]=x[ac]+y[bd]\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}ax+by\\cx+dy\end{bmatrix}=x\begin{b
- 【PyTorch】CUDA基础知识
沐兮Krystal
NLPpytorch深度学习python
为了追求更快的速度,机器学习研究人员开始利用一些计算机中的特殊硬件。这些硬件原本是用来提升图形处理性能的,叫做显卡。NVIDIACUDA显卡中包含一个GPU,它能够以高度并行化的方式实现矩阵乘法。在很长一段时间,英伟达(NVIDIA)的GPU市场份额一直保持领先。他们有一套成熟的软件工具,可以充分利用硬件加速。这套软件框架就是CUDA。MVIDIA的竞争对手是AMD。在Python中使用CUDA创
- GPU深度学习性能的三驾马车:Tensor Core、内存带宽与内存层次结构
m0_70960708
笔记深度学习人工智能
这篇文章可以帮助我们了解GPU对深度学习性能的多个影响因素,从而帮助我们评估、选用GPU。本文将按照GPU各组件的重要程度顺序来进行介绍。TensorCore(张量计算核心)是最重要的因素,其次是GPU的内存带宽和缓存层次结构,最后是GPU的FLOPS。目录01TensorCore(张量计算核心)1.1在没有张量计算核心的情况下进行矩阵乘法运算1.2使用张量计算核心进行矩阵乘法运算1.3使用张量计
- 爆肝优化!FlashAttention-2性能飙升实战:从原理解析到PyTorch 2.2深度优化(附代码与Benchmark)
游戏人生的NPC
PyTorch2.2深度学习进阶pytorch人工智能python
一、引言:Transformer时代的注意力性能革命1.1传统注意力机制的性能瓶颈在大模型训练中,标准Transformer注意力面临三大痛点:内存爆炸:序列长度L=4096时,注意力内存占用达O(L²),A100显存仅能支持批量大小16计算低效:矩阵乘法占比超70%,GPU显存带宽利用率不足30%扩展性差:长序列场景下训练速度呈指数级下降,某千亿模型训练耗时超100天1.2FlashAttent
- 优化异构计算平台:hStreams框架的深度解析
你好像一条狗啊
异构计算hStreams框架流并发矩阵乘法性能优化
优化异构计算平台:hStreams框架的深度解析背景简介在异构计算领域,如何合理地分配和管理计算资源以优化性能是一个关键问题。本章节通过介绍hStreams框架,深入探讨了在异构计算平台中如何通过控制流并发和资源分配来提升矩阵乘法等计算任务的效率。异构计算与流并发异构计算通常涉及多种类型的处理器和加速器,如CPU和协处理器。通过合理配置这些资源,可以在不同的计算域中实现更高的并发性。在hStrea
- flash attention的CUDA编程流水并行加速-V6
谨慎付费(看不懂试读博客不要订阅)
高性能计算redis数据库缓存
之前关于flashattention的介绍可以继续参考链接添加链接描述矩阵乘法的优化参考添加链接描述,我们发现矩阵乘法的最优配置为:BLOCK_DIM_x=BLOCK_DIM_y=16,同时每个线程处理一个8×8的子矩阵。线程网格设置如下所示:constintRq=8;constintRv
- PyTorch 中mm和bmm函数的使用详解
点云SLAM
PyTorch深度学习pytorch人工智能python矩阵乘法3D深度学习深度学习机器学习
torch.mm是PyTorch中用于二维矩阵乘法(matrix-matrixmultiplication)的函数,等价于数学中的A×B矩阵乘积。一、函数定义torch.mm(input,mat2)→Tensor执行的是两个2DTensor(矩阵)的标准矩阵乘法。input:第一个二维张量,形状为(n×m)mat2:第二个二维张量,形状为(m×p)返回:形状为(n×p)的张量二、使用条件和注意事项
- 学习大模型路线图:从菜鸟到造物主的通关秘籍
天学林总
DeepSeek学AI人工智能
大家好!今天我们要解锁一个神秘代码——大模型AI自学路线图。这不是枯燥的课程表,而是通往“数字造物主”的藏宝图!从零基础到训出你的第一个AI,只需五步,全程高能,即刻出发!第一关:筑基期——数学与代码的“扎马步”目标:用30天打造AI思维的基础骨骼核心装备:-数学三件套:-线性代数:矩阵是AI的乐高积木(重点:矩阵乘法、特征值)-概率统计:让AI学会“赌概率”(贝叶斯定理、正态分布)-微积分:反向
- AI要掌握的知识
杰克逊的日记
人工智能AI技术
AI(人工智能)是一个跨学科的复杂领域,其知识体系涵盖理论基础、技术工具和实践应用等多个层面。以下从核心知识模块、技术工具、实践方向等角度,详细梳理AI从业者需要掌握的知识体系:一、数学基础:AI的理论基石1.线性代数核心概念:向量、矩阵、行列式、特征值与特征向量、矩阵分解(如PCA主成分分析的数学基础)。应用场景:数据降维、神经网络中的矩阵运算(如权重矩阵乘法)、图像变换(如旋转、缩放的矩阵表示
- 【动手学深度学习】2.1. 数据操作
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录2.预备知识2.1.数据操作1)入门2)运算符3)广播机制(broadcastingmechanism)4)索引和切片5)节省内存6)转换为其他Python对象7)小结2.预备知识学习深度学习需掌握以下基础:数据处理:涵盖存储、操作与预处理,核心技能为高效管理表格数据(样本为行,属性为列)。线性代数:矩阵运算是处理多维数据的基础,重点理解基本原理与实现,如矩阵乘法与操作。优化与微积分:通过调整
- 【动手学深度学习】2.3. 线性代数
XiaoJ1234567
《动手学深度学习》深度学习线性代数人工智能
目录2.3.线性代数1)标量2)向量3)矩阵4)张量5)张量的基本性质6)降维7)点积8)矩阵-向量积9)矩阵-矩阵乘法10)范数11)小结2.3.线性代数本节将介绍线性代数中的基本数学对象、算术和运算,并用数学符号和相应的代码实现来表示它们。.1)标量定义:仅包含一个数值的量称为标量(零维张量),例如温度值。表示:标量变量用普通小写字母表示(如x,y,z),属于实数空间R。操作:标量支持加法、乘
- DeepSeek源码解构:从MoE架构到MLA的工程化实现
程序边界
架构
文章目录**一、代码结构全景:从模型定义到分布式训练****二、MoE架构:动态路由与稀疏激活的工程化实践****1.专家路由机制(带负载均衡)****数学原理:负载均衡损失推导****三、MLA注意力机制:低秩压缩与解耦旋转位置编码****核心代码实现(含数学优化)****数学优化:低秩矩阵乘法的复杂度分析****五、性能优化:混合精度训练与分布式并行****1.FP8混合精度训练****2.Z
- torch.matmul() VS torch.einsum()
YuSun_WK
pytorch深度学习人工智能
torch.matmul():标准的矩阵乘法向量-向量(点积)a=torch.randn(3)#[3]b=torch.randn(3)#[3]c=torch.matmul(a,b)#点积,标量输出矩阵-向量A=torch.randn(3,4)#[3,4]x=torch.randn(4)#[4]y=torch.matmul(A,x)#[3]矩阵-矩阵A=torch.randn(3,4)#[3,4]B
- 谷歌 DeepMind 发布 AlphaEvolve,解决 300 年数学难题,为近 40 个数学问题找到更优解决方案
hyperai
北京时间5月14日深夜,谷歌DeepMind重磅发布了一款名为AlphaEvolve的编程AIAgent,其将大语言模型的强大代码生成能力与自动评估(automatedevaluators)相结合,能够针对数学和现代计算中的一些基础性和复杂问题进行算法的设计与优化。据官方介绍,AlphaEvolve提升了谷歌数据中心、芯片设计以及AI训练流程的效率,还帮助设计了更快的矩阵乘法算法,并找到了一些数学
- strassen算法 DeepMind的AlphaZero最快矩阵乘法的前身
中堂李1027
算法矩阵线性代数
strassen算法DeepMind的AlphaZero最快矩阵乘法的前身矩阵乘法是线性代数中最基础也是最重要的操作之一,广泛应用于科学计算、工程、计算机图形学、机器学习等领域。随着数据规模的不断扩大,如何高效地进行矩阵乘法成为研究的热点。本文将介绍传统的矩阵乘法方法以及一种经典的优化算法——Strassen算法,并探讨它们在4×4矩阵乘法中的应用。目录引言矩阵乘法基础传统矩阵乘法Strassen
- 计算图存储采用矩阵吗,和张量关系
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython矩阵线性代数人工智能机器学习langchain深度学习
计算图存储采用矩阵吗,和张量关系计算图的存储方式与张量的关系一、计算图的存储方式计算图(ComputationalGraph)是一种用于描述数学运算的有向无环图(DAG),其节点代表运算(如加减乘除、矩阵乘法、激活函数等),边代表运算的输入和输出(通常是张量)。计算图的存储并不直接使用矩阵,而是通过节点和边的关系(如邻接表、属性图等结构)记录运算逻辑和数据流动向。核心存储要素:每个节点(运算)记录
- 3337. 字符串转换后的长度 II
追逐此刻
力扣机器学习人工智能pythonleetcode数据结构算法开发语言
3337.字符串转换后的长度II#定义了一个大质数MOD,用于取模运算,防止数值溢出。MOD=1_000_000_007#矩阵乘法muldefmul(a:List[List[int]],b:List[List[int]])->List[List[int]]:#输入两个矩阵a和b,返回它们的矩阵乘积a@b。#使用列表推导式计算矩阵乘法的每个元素,并对结果取模。return[[sum(x*yforx,
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu